ON THE NUMBER OF QUADRATIC ORTHOMORPHISMS THAT PRODUCE MAXIMALLY NONASSOCIATIVE QUASIGROUPS

IF 0.5 4区 数学 Q3 MATHEMATICS
Aleš Drápal, Ian M. Wanless
{"title":"ON THE NUMBER OF QUADRATIC ORTHOMORPHISMS THAT PRODUCE MAXIMALLY NONASSOCIATIVE QUASIGROUPS","authors":"Aleš Drápal, Ian M. Wanless","doi":"10.1017/s1446788722000386","DOIUrl":null,"url":null,"abstract":"Abstract Let q be an odd prime power and suppose that $a,b\\in \\mathbb {F}_q$ are such that $ab$ and $(1{-}a)(1{-}b)$ are nonzero squares. Let $Q_{a,b} = (\\mathbb {F}_q,*)$ be the quasigroup in which the operation is defined by $u*v=u+a(v{-}u)$ if $v-u$ is a square, and $u*v=u+b(v{-}u)$ if $v-u$ is a nonsquare. This quasigroup is called maximally nonassociative if it satisfies $x*(y*z) = (x*y)*z \\Leftrightarrow x=y=z$ . Denote by $\\sigma (q)$ the number of $(a,b)$ for which $Q_{a,b}$ is maximally nonassociative. We show that there exist constants $\\alpha \\approx 0.029\\,08$ and $\\beta \\approx 0.012\\,59$ such that if $q\\equiv 1 \\bmod 4$ , then $\\lim \\sigma (q)/q^2 = \\alpha $ , and if $q \\equiv 3 \\bmod 4$ , then $\\lim \\sigma (q)/q^2 = \\beta $ .","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1446788722000386","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Let q be an odd prime power and suppose that $a,b\in \mathbb {F}_q$ are such that $ab$ and $(1{-}a)(1{-}b)$ are nonzero squares. Let $Q_{a,b} = (\mathbb {F}_q,*)$ be the quasigroup in which the operation is defined by $u*v=u+a(v{-}u)$ if $v-u$ is a square, and $u*v=u+b(v{-}u)$ if $v-u$ is a nonsquare. This quasigroup is called maximally nonassociative if it satisfies $x*(y*z) = (x*y)*z \Leftrightarrow x=y=z$ . Denote by $\sigma (q)$ the number of $(a,b)$ for which $Q_{a,b}$ is maximally nonassociative. We show that there exist constants $\alpha \approx 0.029\,08$ and $\beta \approx 0.012\,59$ such that if $q\equiv 1 \bmod 4$ , then $\lim \sigma (q)/q^2 = \alpha $ , and if $q \equiv 3 \bmod 4$ , then $\lim \sigma (q)/q^2 = \beta $ .
关于产生最大非结合拟群的二次正态的个数
设q为奇质数幂,并设$a,b\in \mathbb {F}_q$满足$ab$和$(1{-}a)(1{-}b)$为非零平方。设$Q_{a,b} = (\mathbb {F}_q,*)$为准群,如果$v-u$是平方,则操作定义为$u*v=u+a(v{-}u)$;如果$v-u$是非平方,则操作定义为$u*v=u+b(v{-}u)$。如果这个拟群满足$x*(y*z) = (x*y)*z \Leftrightarrow x=y=z$,则称为最大非结合群。用$\sigma (q)$表示$Q_{a,b}$最大不关联的$(a,b)$的个数。我们证明存在常数$\alpha \approx 0.029\,08$和$\beta \approx 0.012\,59$,使得如果$q\equiv 1 \bmod 4$,则$\lim \sigma (q)/q^2 = \alpha $,如果$q \equiv 3 \bmod 4$,则$\lim \sigma (q)/q^2 = \beta $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信