Particle-Based Optimization Algorithms for Longitudinal Control of Autonomous Vehicle: A Comparative Study

IF 1 Q4 ENGINEERING, MECHANICAL
Fadillah Adam Maani, Alif Rizqullah Mahdi, Karina Ardellia Arfian, Yul Yunazwin Nazaruddin
{"title":"Particle-Based Optimization Algorithms for Longitudinal Control of Autonomous Vehicle: A Comparative Study","authors":"Fadillah Adam Maani, Alif Rizqullah Mahdi, Karina Ardellia Arfian, Yul Yunazwin Nazaruddin","doi":"10.15282/ijame.20.2.2023.14.0812","DOIUrl":null,"url":null,"abstract":"In order to improve the stability and performance of an autonomous vehicle, optimization needs to be explicitly performed in the controllers, which has an essential part in the tracking system. This work proposes a novel longitudinal control optimization scheme and a novel longitudinal controller consisting of a feed-forward and feedback term. The feed-forward term is inspired by the vehicle’s steady-state response, whereas the feedback term is a proportional-integral-derivative (PID) controller. Also, a model representing the longitudinal vehicle dynamics is designed based on physical phenomena affecting the vehicle. Besides, some nature-inspired optimization algorithms are used to determine the optimal model parameters and optimize the controller parameters, i.e., Particle Swarm Optimization (PSO), Accelerated PSO (APSO), Flower Pollination Algorithm (FPA), and Modified FPA (MFPA). The algorithms are compared in optimizing the longitudinal vehicle model and controller using the CARLA simulator, and stability tests are also done for each algorithm. In addition, the characteristics of several cost functions in controller optimization are inspected. The results show that the MFPA is the most stable algorithm, the proposed model represents the system satisfactorily, and optimizing the controller using a regularized cost function leads to better overall performance. Our code is available in https://github.com/fadamsyah/Particle-Based-Optimization-for-Longitudinal-Control.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.20.2.2023.14.0812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to improve the stability and performance of an autonomous vehicle, optimization needs to be explicitly performed in the controllers, which has an essential part in the tracking system. This work proposes a novel longitudinal control optimization scheme and a novel longitudinal controller consisting of a feed-forward and feedback term. The feed-forward term is inspired by the vehicle’s steady-state response, whereas the feedback term is a proportional-integral-derivative (PID) controller. Also, a model representing the longitudinal vehicle dynamics is designed based on physical phenomena affecting the vehicle. Besides, some nature-inspired optimization algorithms are used to determine the optimal model parameters and optimize the controller parameters, i.e., Particle Swarm Optimization (PSO), Accelerated PSO (APSO), Flower Pollination Algorithm (FPA), and Modified FPA (MFPA). The algorithms are compared in optimizing the longitudinal vehicle model and controller using the CARLA simulator, and stability tests are also done for each algorithm. In addition, the characteristics of several cost functions in controller optimization are inspected. The results show that the MFPA is the most stable algorithm, the proposed model represents the system satisfactorily, and optimizing the controller using a regularized cost function leads to better overall performance. Our code is available in https://github.com/fadamsyah/Particle-Based-Optimization-for-Longitudinal-Control.
基于粒子的自动驾驶汽车纵向控制优化算法的比较研究
为了提高自动驾驶车辆的稳定性和性能,需要明确地对控制器进行优化,这是跟踪系统的重要组成部分。本文提出了一种新的纵向控制优化方案和一种由前馈和反馈项组成的新型纵向控制器。前馈项的灵感来自车辆的稳态响应,而反馈项是一个比例积分导数(PID)控制器。根据影响车辆的物理现象,设计了车辆纵向动力学模型。此外,采用了一些受自然启发的优化算法来确定最优模型参数和优化控制器参数,即粒子群算法(PSO)、加速粒子群算法(APSO)、传粉算法(FPA)和改进FPA (MFPA)。利用CARLA仿真器对各算法进行了纵向模型优化和控制器优化的比较,并对各算法进行了稳定性试验。此外,还考察了控制器优化中几种代价函数的特性。结果表明,MFPA是最稳定的算法,所提出的模型令人满意地代表了系统,并且使用正则化代价函数优化控制器可以获得更好的整体性能。我们的代码可在https://github.com/fadamsyah/Particle-Based-Optimization-for-Longitudinal-Control中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
10.00%
发文量
43
审稿时长
20 weeks
期刊介绍: The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信