Borislav Ignatov, Daniel Sortebech, Thomas Emmanuel, Ekaterina Zhuravleva, Liv Eidsmo
{"title":"Method for high‐plex analysis of immune cells in human skin using the GeoMx system","authors":"Borislav Ignatov, Daniel Sortebech, Thomas Emmanuel, Ekaterina Zhuravleva, Liv Eidsmo","doi":"10.1111/sji.13326","DOIUrl":null,"url":null,"abstract":"Abstract Specific T cell populations in the skin have been demonstrated as important disease drivers in several dermatoses. Due to the unique skin architecture, these cells are not grouped together in structures but dispersedly spread out throughout the epidermis. Following tissue disruption and isolation, only about 10% of skin T cells are recovered and any in vitro expansion may alter their bona fide phenotype. The Nanostring GeoMx system was developed to address cellular phenotype and protein expression in a tissue spatial context. To do so, regions of interest (ROI) must exceed a certain area threshold (usually 100 μm in diameter) to generate a sufficient signal‐to‐noise ratio. Here, we present an approach that allows for the pooling of numerous smaller ROIs within the skin, enabling T cell and melanocyte phenotyping. Skin samples from healthy individuals and vitiligo patients were analysed using the GeoMx system and several immune profiling panels. A sufficient signal‐to‐noise ratio was achieved by pooling smaller ROIs and analysing them as a single group. While this prevents spatial analysis, this method allows for detailed analysis of cells as a population in the context of their physiological environment, making it possible to investigate in situ phenotype of rare cells in different tissue compartments.","PeriodicalId":21493,"journal":{"name":"Scandinavian Journal of Immunology","volume":"42 1","pages":"0"},"PeriodicalIF":4.1000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/sji.13326","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Specific T cell populations in the skin have been demonstrated as important disease drivers in several dermatoses. Due to the unique skin architecture, these cells are not grouped together in structures but dispersedly spread out throughout the epidermis. Following tissue disruption and isolation, only about 10% of skin T cells are recovered and any in vitro expansion may alter their bona fide phenotype. The Nanostring GeoMx system was developed to address cellular phenotype and protein expression in a tissue spatial context. To do so, regions of interest (ROI) must exceed a certain area threshold (usually 100 μm in diameter) to generate a sufficient signal‐to‐noise ratio. Here, we present an approach that allows for the pooling of numerous smaller ROIs within the skin, enabling T cell and melanocyte phenotyping. Skin samples from healthy individuals and vitiligo patients were analysed using the GeoMx system and several immune profiling panels. A sufficient signal‐to‐noise ratio was achieved by pooling smaller ROIs and analysing them as a single group. While this prevents spatial analysis, this method allows for detailed analysis of cells as a population in the context of their physiological environment, making it possible to investigate in situ phenotype of rare cells in different tissue compartments.
期刊介绍:
This peer-reviewed international journal publishes original articles and reviews on all aspects of basic, translational and clinical immunology. The journal aims to provide high quality service to authors, and high quality articles for readers.
The journal accepts for publication material from investigators all over the world, which makes a significant contribution to basic, translational and clinical immunology.