A Comprehensive Review of Ultrahigh Molecular Weight Polyethylene Fibers for Applications Based on Their Different Preparation Techniques

IF 2 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Omar Faruk, Yang Yang, Jiangliang Zhang, Junxin Yu, Jiaojiao Lv, Weichao Lv, Yueying Du, Jindan Wu, Dongming Qi
{"title":"A Comprehensive Review of Ultrahigh Molecular Weight Polyethylene Fibers for Applications Based on Their Different Preparation Techniques","authors":"Omar Faruk, Yang Yang, Jiangliang Zhang, Junxin Yu, Jiaojiao Lv, Weichao Lv, Yueying Du, Jindan Wu, Dongming Qi","doi":"10.1155/2023/6656692","DOIUrl":null,"url":null,"abstract":"Ultrahigh molecular weight polyethylene (UHMWPE) fiber is widely recognized for its exceptional properties, including high strength-to-weight ratio, toughness, and chemical resistance, making it a preferred material for reinforcement in various applications. However, its low melting point, surface inertness, and weak adhesion to polymer matrices have limited its potential use in some fields. Researchers have addressed these shortcomings by focusing on surface modifications through physical treatment or chemical coating, thereby enhancing the versatility of materials in numerous UHMWPE fiber composites. By improving the tribological and interfacial properties of UHMWPE, various applications can be explored, including prosthetic joints, energy-absorbing road safety systems, microelectromechanical system devices, and protective materials for defense and personal thermal management. This review provides a comprehensive overview of the remarkable performance of UHMWPE and its composites, providing insights into its wide array of applications.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6656692","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrahigh molecular weight polyethylene (UHMWPE) fiber is widely recognized for its exceptional properties, including high strength-to-weight ratio, toughness, and chemical resistance, making it a preferred material for reinforcement in various applications. However, its low melting point, surface inertness, and weak adhesion to polymer matrices have limited its potential use in some fields. Researchers have addressed these shortcomings by focusing on surface modifications through physical treatment or chemical coating, thereby enhancing the versatility of materials in numerous UHMWPE fiber composites. By improving the tribological and interfacial properties of UHMWPE, various applications can be explored, including prosthetic joints, energy-absorbing road safety systems, microelectromechanical system devices, and protective materials for defense and personal thermal management. This review provides a comprehensive overview of the remarkable performance of UHMWPE and its composites, providing insights into its wide array of applications.
基于不同制备工艺的超高分子量聚乙烯纤维应用综述
超高分子量聚乙烯(UHMWPE)纤维因其优异的性能而被广泛认可,包括高强度重量比,韧性和耐化学性,使其成为各种应用中增强的首选材料。然而,它的熔点低、表面惰性和与聚合物基体的附着力弱,限制了它在某些领域的潜在应用。研究人员通过物理处理或化学涂层的表面改性来解决这些缺点,从而提高了许多超高分子量聚乙烯纤维复合材料的多功能性。通过提高超高分子量聚乙烯的摩擦学和界面性能,可以探索各种应用,包括假肢关节、吸能道路安全系统、微机电系统设备、防御和个人热管理防护材料。本文综述了超高分子量聚乙烯及其复合材料的卓越性能,并对其广泛的应用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Polymer Technology
Advances in Polymer Technology 工程技术-高分子科学
CiteScore
5.50
自引率
0.00%
发文量
70
审稿时长
9 months
期刊介绍: Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信