In-situ investigation into the dynamic evolution of electrode surface H* and H* mediated pH-independent and residue-free electro-Fenton process

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jun Zhang, Songying Qu, Bing Li, Xiaoyan Li, Lin Lin
{"title":"In-situ investigation into the dynamic evolution of electrode surface H* and H* mediated pH-independent and residue-free electro-Fenton process","authors":"Jun Zhang, Songying Qu, Bing Li, Xiaoyan Li, Lin Lin","doi":"10.1016/j.cej.2023.145494","DOIUrl":null,"url":null,"abstract":"The practical use of Fenton process has been thus far limited by the harsh pH and accumulation of iron-rich sludge, while these two shortcomings will be tackled hopefully via developing non-metallic-catalyzed green Fenton-like approach. Herein, we investigate in-situ the dynamic evolution of electrode surface atomic hydrogen (H*) and H* mediated pH-independent and residue-free electro-Fenton process via operando electrochemical investigation and visualization techniques. The H* generated on the surface of palladium-coated electrode enables effective activation of hydrogen peroxide (H2O2) to generate hydroxyl radical (OH) for efficient bisphenol A degradation (>99%), validated by in-situ cyclic voltammetry and electron spin resonance. Meanwhile, in-situ Raman spectra confirms that H2O2 is activated through a transition state of *H3O2 adduct with a low reaction energy barrier of 0.51 eV, whereby the lone electron in H* can readily cleave peroxide bond to produce OH and H2O as the only products (ΔG = −1.03 eV). More importantly, the electron-driven H* production is independent of the solution pH as both H+ and H2O can act as precursors verified by in-situ fluorescence analyses, so that the H2O2 activation mediated by H* extends successfully to a wider pH range (3–10). Our research provides a promising path toward eliminating restrictions of traditional Fenton process and paves the way simultaneously for in-situ investigation into reaction mechanism of such electrochemical processes.","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cej.2023.145494","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The practical use of Fenton process has been thus far limited by the harsh pH and accumulation of iron-rich sludge, while these two shortcomings will be tackled hopefully via developing non-metallic-catalyzed green Fenton-like approach. Herein, we investigate in-situ the dynamic evolution of electrode surface atomic hydrogen (H*) and H* mediated pH-independent and residue-free electro-Fenton process via operando electrochemical investigation and visualization techniques. The H* generated on the surface of palladium-coated electrode enables effective activation of hydrogen peroxide (H2O2) to generate hydroxyl radical (OH) for efficient bisphenol A degradation (>99%), validated by in-situ cyclic voltammetry and electron spin resonance. Meanwhile, in-situ Raman spectra confirms that H2O2 is activated through a transition state of *H3O2 adduct with a low reaction energy barrier of 0.51 eV, whereby the lone electron in H* can readily cleave peroxide bond to produce OH and H2O as the only products (ΔG = −1.03 eV). More importantly, the electron-driven H* production is independent of the solution pH as both H+ and H2O can act as precursors verified by in-situ fluorescence analyses, so that the H2O2 activation mediated by H* extends successfully to a wider pH range (3–10). Our research provides a promising path toward eliminating restrictions of traditional Fenton process and paves the way simultaneously for in-situ investigation into reaction mechanism of such electrochemical processes.
电极表面H*和H*介导的不依赖于ph和无残留的电芬顿过程的动态演变的原位研究
到目前为止,Fenton法的实际应用受到恶劣pH值和富铁污泥积累的限制,而这两个缺点有望通过开发非金属催化的绿色Fenton-like方法来解决。在此,我们通过操作电化学研究和可视化技术研究了电极表面原子氢(H*)和H*介导的不依赖于ph和无残留物的电fenton过程的动态演变。钯包覆电极表面生成的H*能够有效激活过氧化氢(H2O2)生成羟基自由基(OH),有效降解双酚A(>99%),通过原位循环伏安法和电子自旋共振验证。同时,原位拉曼光谱证实H2O2通过*H3O2加合物的过渡态被激活,反应能垒较低,为0.51 eV, H*中的孤电子可以很容易地劈开过氧化物键,生成OH和H2O作为唯一产物(ΔG =−1.03 eV)。更重要的是,电子驱动的H*生成与溶液pH无关,因为原位荧光分析证实H+和H2O都可以作为前体,因此H*介导的H2O2活化成功地扩展到更宽的pH范围(3-10)。我们的研究为消除传统Fenton工艺的局限性提供了一条有希望的途径,同时也为现场研究这种电化学过程的反应机理铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信