Mirko Anello, Marco Bittelli, Massimiliano Bordoni, Fabrizio Laurini, Claudia Meisina, Marco Riani, Roberto Valentino
{"title":"Robust Statistical Processing of Long-Time Data Series to Estimate Soil Water Content","authors":"Mirko Anello, Marco Bittelli, Massimiliano Bordoni, Fabrizio Laurini, Claudia Meisina, Marco Riani, Roberto Valentino","doi":"10.1007/s11004-023-10100-x","DOIUrl":null,"url":null,"abstract":"Abstract The research presented in this paper aims at providing a statistical model that is capable of estimating soil water content based on weather data. The model was tested using a long-time series of field experimental data from continuous monitoring at a test site in Oltrepò Pavese (northern Italy). An innovative statistical function was developed in order to predict the evolution of soil–water content from precipitation and air temperature. The data were analysed in a framework of robust statistics by using a combination of robust parametric and non-parametric models. Specifically, a statistical model, which includes the typical seasonal trend of field data, has been set up. The proposed model showed that relevant features present in the field of experimental data can be obtained and correctly described for predictive purposes.","PeriodicalId":51117,"journal":{"name":"Mathematical Geosciences","volume":"183 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11004-023-10100-x","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The research presented in this paper aims at providing a statistical model that is capable of estimating soil water content based on weather data. The model was tested using a long-time series of field experimental data from continuous monitoring at a test site in Oltrepò Pavese (northern Italy). An innovative statistical function was developed in order to predict the evolution of soil–water content from precipitation and air temperature. The data were analysed in a framework of robust statistics by using a combination of robust parametric and non-parametric models. Specifically, a statistical model, which includes the typical seasonal trend of field data, has been set up. The proposed model showed that relevant features present in the field of experimental data can be obtained and correctly described for predictive purposes.
期刊介绍:
Mathematical Geosciences (formerly Mathematical Geology) publishes original, high-quality, interdisciplinary papers in geomathematics focusing on quantitative methods and studies of the Earth, its natural resources and the environment. This international publication is the official journal of the IAMG. Mathematical Geosciences is an essential reference for researchers and practitioners of geomathematics who develop and apply quantitative models to earth science and geo-engineering problems.