Study on Properties of New Biodegradable Plant Fiber (Agave Decipiens) for Polymer Reinforcement

IF 1.2 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
{"title":"Study on Properties of New Biodegradable Plant Fiber (Agave Decipiens) for Polymer Reinforcement","authors":"","doi":"10.30955/gnj.005219","DOIUrl":null,"url":null,"abstract":"<p>The article involves in the process of study on novel plant fiber from agave plant species known as agave decipiens. The fiber was mechanically extracted from their leaves and fiber was chemically treated using sodium hydroxide by 5% (w/v). Using various analyses, the fiber was characterized and its properties were obtained. From chemical constituent analysis it was confirmed that hemicellulose, amorphous lignin, and other impurities were removed to some extent, and using x-ray diffraction (XRD), an improvement in crystallinity index was observed (i.e. from 47.99% to 52.29%). Increased crystallinity provides better tensile stress from 479.302 MPa to 494.172 MPa, which was confirmed by single fiber tensile test. A change in physical diameter was observed using a digital microscope, the outer diameter was reduced to 117.66µm from 121.84µm. Change in chemical components was identified by Fourier Transform Infrared Spectroscopy (FTIR). Alkaline-treated (AT) fiber sustains a temperature of about 240oC during thermogravimetric analysis (TGA). Study on surface morphology was conducted with help of scanning electron microscope (SEM). Concluding that alkaline treatment made some impact on fiber characteristics and made it suitable for reinforcement.</p>&#x0D;","PeriodicalId":55087,"journal":{"name":"Global Nest Journal","volume":"118 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Nest Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30955/gnj.005219","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The article involves in the process of study on novel plant fiber from agave plant species known as agave decipiens. The fiber was mechanically extracted from their leaves and fiber was chemically treated using sodium hydroxide by 5% (w/v). Using various analyses, the fiber was characterized and its properties were obtained. From chemical constituent analysis it was confirmed that hemicellulose, amorphous lignin, and other impurities were removed to some extent, and using x-ray diffraction (XRD), an improvement in crystallinity index was observed (i.e. from 47.99% to 52.29%). Increased crystallinity provides better tensile stress from 479.302 MPa to 494.172 MPa, which was confirmed by single fiber tensile test. A change in physical diameter was observed using a digital microscope, the outer diameter was reduced to 117.66µm from 121.84µm. Change in chemical components was identified by Fourier Transform Infrared Spectroscopy (FTIR). Alkaline-treated (AT) fiber sustains a temperature of about 240oC during thermogravimetric analysis (TGA). Study on surface morphology was conducted with help of scanning electron microscope (SEM). Concluding that alkaline treatment made some impact on fiber characteristics and made it suitable for reinforcement.

新型可生物降解植物纤维(龙舌兰脱烯)增强聚合物性能的研究
本文研究了从龙舌兰植物中提取新型植物纤维——龙舌兰脱叶纤维的过程。用机械法提取其叶片中的纤维,并用5% (w/v)的氢氧化钠对纤维进行化学处理。通过各种分析,对该纤维进行了表征,得到了其性能。化学成分分析证实了半纤维素、无定形木质素等杂质得到了一定程度的去除,并用x射线衍射(XRD)观察到结晶度指数的提高(从47.99%提高到52.29%)。单根纤维拉伸试验证实,结晶度的提高使拉伸应力在479.302 MPa ~ 494.172 MPa范围内得到改善。在数码显微镜下观察到物理直径的变化,外径从121.84µm减小到117.66µm。用傅里叶变换红外光谱(FTIR)鉴定了化学成分的变化。在热重分析(TGA)中,碱处理(AT)纤维的温度维持在240℃左右。利用扫描电镜(SEM)对其表面形貌进行了研究。得出碱处理对纤维性能有一定影响,适合作增强剂的结论。</p>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Nest Journal
Global Nest Journal 环境科学-环境科学
CiteScore
1.50
自引率
9.10%
发文量
100
审稿时长
>12 weeks
期刊介绍: Global Network of Environmental Science and Technology Journal (Global NEST Journal) is a scientific source of information for professionals in a wide range of environmental disciplines. The Journal is published both in print and online. Global NEST Journal constitutes an international effort of scientists, technologists, engineers and other interested groups involved in all scientific and technological aspects of the environment, as well, as in application techniques aiming at the development of sustainable solutions. Its main target is to support and assist the dissemination of information regarding the most contemporary methods for improving quality of life through the development and application of technologies and policies friendly to the environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信