Alfredo J. Perez, Sherali Zeadally, David Kingsley Tan
{"title":"Detecting Mobile Malware Associated With Global Pandemics","authors":"Alfredo J. Perez, Sherali Zeadally, David Kingsley Tan","doi":"10.1109/mprv.2023.3321218","DOIUrl":null,"url":null,"abstract":"More than 6 billion smartphones available worldwide can enable governments and public health organizations to develop apps to manage global pandemics. However, hackers can take advantage of this opportunity to target the public in nefarious ways through malware disguised as pandemics-related apps. A recent analysis conducted during the COVID-19 pandemic showed that several variants of COVID-19 related malware were installed by the public from nontrusted sources. We propose the use of app permissions and an extra feature (the total number of permissions) to develop a static detector using machine learning (ML) models to enable the fast-detection of pandemics-related Android malware at installation time. Using a dataset of more than 2000 COVID-19 related apps and by evaluating ML models created using decision trees and Naive Bayes, our results show that pandemics-related malware apps can be detected with an accuracy above 90% using decision tree models with app permissions and the proposed feature.","PeriodicalId":55021,"journal":{"name":"IEEE Pervasive Computing","volume":"35 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Pervasive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mprv.2023.3321218","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
More than 6 billion smartphones available worldwide can enable governments and public health organizations to develop apps to manage global pandemics. However, hackers can take advantage of this opportunity to target the public in nefarious ways through malware disguised as pandemics-related apps. A recent analysis conducted during the COVID-19 pandemic showed that several variants of COVID-19 related malware were installed by the public from nontrusted sources. We propose the use of app permissions and an extra feature (the total number of permissions) to develop a static detector using machine learning (ML) models to enable the fast-detection of pandemics-related Android malware at installation time. Using a dataset of more than 2000 COVID-19 related apps and by evaluating ML models created using decision trees and Naive Bayes, our results show that pandemics-related malware apps can be detected with an accuracy above 90% using decision tree models with app permissions and the proposed feature.
期刊介绍:
IEEE Pervasive Computing explores the role of computing in the physical world–as characterized by visions such as the Internet of Things and Ubiquitous Computing. Designed for researchers, practitioners, and educators, this publication acts as a catalyst for realizing the ideas described by Mark Weiser in 1988. The essence of this vision is the creation of environments saturated with sensing, computing, and wireless communication that gracefully support the needs of individuals and society. Many key building blocks for this vision are now viable commercial technologies: wearable and handheld computers, wireless networking, location sensing, Internet of Things platforms, and so on. However, the vision continues to present deep challenges for experts in areas such as hardware design, sensor networks, mobile systems, human-computer interaction, industrial design, machine learning, data science, and societal issues including privacy and ethics. Through special issues, the magazine explores applications in areas such as assisted living, automotive systems, cognitive assistance, hardware innovations, ICT4D, manufacturing, retail, smart cities, and sustainability. In addition, the magazine accepts peer-reviewed papers of wide interest under a general call, and also features regular columns on hot topics and interviews with luminaries in the field.