High strength, anti-static, thermal conductive glass fiber/epoxy composites for medical devices: A strategy of modifying fibers with functionalized carbon nanotubes
{"title":"High strength, anti-static, thermal conductive glass fiber/epoxy composites for medical devices: A strategy of modifying fibers with functionalized carbon nanotubes","authors":"Yue Li, Shaohua Zeng","doi":"10.1515/epoly-2023-0123","DOIUrl":null,"url":null,"abstract":"Abstract A series of aliphatic amine-functionalized multiwalled carbon nanotubes (MWCNTs) wherein varied secondary amine numbers were grafted on the MWCNTs’ surface were synthesized and further dispersed onto the glass fibers for reinforcing epoxy-based composites. By tuning secondary amine numbers of aliphatic amines, the dispersion of MWCNTs and ultimately mechanical, thermal, and conductive properties of epoxy-based composites could be adjusted. Using an optimal secondary amine number of aliphatic amine (triethylenetetramine), the interlaminar shear strength, tensile strength, and flexural strength of epoxy-based composite increased by 43.9%, 34.8%, and 35.0%, respectively; the work of fracture after interlaminar shear tests increased by 233.9%, suggesting strengthening/toughening effects of functionalized MWCNTs; significant reduction in surface resistance and increased thermal conductivity were also obtained, implying the superior conductive properties for composites. This work offers a new strategy for designing fiber-reinforced composites with high strength, excellent antistatic properties, and good thermal conductivity for medical device applications.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":"7 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0123","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract A series of aliphatic amine-functionalized multiwalled carbon nanotubes (MWCNTs) wherein varied secondary amine numbers were grafted on the MWCNTs’ surface were synthesized and further dispersed onto the glass fibers for reinforcing epoxy-based composites. By tuning secondary amine numbers of aliphatic amines, the dispersion of MWCNTs and ultimately mechanical, thermal, and conductive properties of epoxy-based composites could be adjusted. Using an optimal secondary amine number of aliphatic amine (triethylenetetramine), the interlaminar shear strength, tensile strength, and flexural strength of epoxy-based composite increased by 43.9%, 34.8%, and 35.0%, respectively; the work of fracture after interlaminar shear tests increased by 233.9%, suggesting strengthening/toughening effects of functionalized MWCNTs; significant reduction in surface resistance and increased thermal conductivity were also obtained, implying the superior conductive properties for composites. This work offers a new strategy for designing fiber-reinforced composites with high strength, excellent antistatic properties, and good thermal conductivity for medical device applications.
期刊介绍:
e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome.
The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.