Complexity of limit cycles with block-sequential update schedules in conjunctive networks

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Julio Aracena, Florian Bridoux, Luis Gómez, Lilian Salinas
{"title":"Complexity of limit cycles with block-sequential update schedules in conjunctive networks","authors":"Julio Aracena, Florian Bridoux, Luis Gómez, Lilian Salinas","doi":"10.1007/s11047-023-09947-0","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the following decision problem: given a conjunctive Boolean network defined by its interaction digraph, does it have a limit cycle of a given length k? We prove that this problem is NP-complete in general if k is a parameter of the problem and is in P if the interaction digraph is strongly connected. The case where k is fixed, but the interaction digraph is not strongly connected, remains open. Furthermore, we study some variations of the decision problem: given a conjunctive Boolean network, does there exist a block-sequential (resp. sequential) update schedule such that there is a limit cycle of length k? We prove that these problems are NP-complete for any fixed constant $$k \\ge 2$$ .","PeriodicalId":49783,"journal":{"name":"Natural Computing","volume":"154 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11047-023-09947-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we deal with the following decision problem: given a conjunctive Boolean network defined by its interaction digraph, does it have a limit cycle of a given length k? We prove that this problem is NP-complete in general if k is a parameter of the problem and is in P if the interaction digraph is strongly connected. The case where k is fixed, but the interaction digraph is not strongly connected, remains open. Furthermore, we study some variations of the decision problem: given a conjunctive Boolean network, does there exist a block-sequential (resp. sequential) update schedule such that there is a limit cycle of length k? We prove that these problems are NP-complete for any fixed constant $$k \ge 2$$ .

Abstract Image

联合网络中具有块顺序更新调度的极限环的复杂性
在本文中,我们处理以下决策问题:给定一个由其交互有向图定义的合布尔网络,它是否具有给定长度k的极限环?我们证明了如果k是问题的一个参数,那么这个问题一般是np完全的,如果相互作用有向图是强连通的,那么这个问题在P内。k是固定的,但是相互作用有向图不是强连接的情况,仍然是开放的。此外,我们还研究了决策问题的一些变体:给定一个合布尔网络,是否存在一个块顺序网络?序列更新计划使得存在长度为k?我们证明了这些问题对于任意固定常数$$k \ge 2$$都是np完全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Computing
Natural Computing Computer Science-Computer Science Applications
CiteScore
4.40
自引率
4.80%
发文量
49
审稿时长
3 months
期刊介绍: The journal is soliciting papers on all aspects of natural computing. Because of the interdisciplinary character of the journal a special effort will be made to solicit survey, review, and tutorial papers which would make research trends in a given subarea more accessible to the broad audience of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信