Recovery of Plane Curves from Branch Points

Daniele Agostini, Hannah Markwig, Clemens Nollau, Victoria Schleis, Javier Sendra-Arranz, Bernd Sturmfels
{"title":"Recovery of Plane Curves from Branch Points","authors":"Daniele Agostini, Hannah Markwig, Clemens Nollau, Victoria Schleis, Javier Sendra-Arranz, Bernd Sturmfels","doi":"10.1007/s00454-023-00538-5","DOIUrl":null,"url":null,"abstract":"Abstract We recover plane curves from their branch points under projection onto a line. Our focus lies on cubics and quartics. These have 6 and 12 branch points respectively. The plane Hurwitz numbers 40 and 120 count the orbits of solutions. We determine the numbers of real solutions, and we present exact algorithms for recovery. Our approach relies on 150 years of beautiful algebraic geometry, from Clebsch to Vakil and beyond.","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00538-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We recover plane curves from their branch points under projection onto a line. Our focus lies on cubics and quartics. These have 6 and 12 branch points respectively. The plane Hurwitz numbers 40 and 120 count the orbits of solutions. We determine the numbers of real solutions, and we present exact algorithms for recovery. Our approach relies on 150 years of beautiful algebraic geometry, from Clebsch to Vakil and beyond.
从分支点恢复平面曲线
摘要我们从平面曲线的分支点投影到直线上来恢复平面曲线。我们的重点是立方和四分之一。它们分别有6和12个分支点。赫维茨平面40和120表示解的轨道。我们确定了实解的个数,并给出了精确的恢复算法。我们的方法依赖于150年来美丽的代数几何,从克莱布什到瓦基尔等等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信