Geeta Mishra, Parmesh K. Dwivedi, Neeraj Verma, Sajal Srivastava, Ashok K. Singh, Devdutt Chaturvedi
{"title":"p-TSA-Promoted Efficient Synthesis of Some New Thiophene Hybridized Thiadiazolyl Schiff Bases as Antibacterial Agents","authors":"Geeta Mishra, Parmesh K. Dwivedi, Neeraj Verma, Sajal Srivastava, Ashok K. Singh, Devdutt Chaturvedi","doi":"10.59467/ijhc.2023.33.361","DOIUrl":null,"url":null,"abstract":"A new series of thiophene hybridized thiadiazolyl Schiff bases was designed and synthesized employing FeCl3-mediated cyclization of thiosemicarbazoneinto thiadiazoles and their subsequent Schiff bases formation using p-TSA in benzene. To understand the interaction of the proposed compounds with β-lactamase (Protein Data Bank [PDB] ID: 3UDI), a molecular docking was performed. All the compounds demonstrated an optimal binding affinity with β-lactamase (−8.17 to −9.75 kcal/mol) and showed crucial hydrogen bonds and π–π interaction with the leading amino acids Arg298, Ala300, and Val391 located at the active site of β-lactamase. The in vitro antibacterial activity of the desired molecules was conducted against few gram-positive and Gram-negative bacterial strains using amoxicillinas reference drug. The compound having p-hydroxyphenyl substituent (3c) was found to be potentially effective to inhibit P. aeruginosa and E. coli with MIC value 7.5 μg/mL and 9.0 μg/mL, respectively, whereas other compounds exhibited moderate to good activity. Altogether, the primary in-vitro screening of newly synthesized thiophene hybridized thiadiazole Schiff bases opens a new venture towards the development of promising alternatives of β-lactamase inhibitors as anti-bacterial agents.","PeriodicalId":54993,"journal":{"name":"Indian Journal of Heterocyclic Chemistry","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Heterocyclic Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59467/ijhc.2023.33.361","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
A new series of thiophene hybridized thiadiazolyl Schiff bases was designed and synthesized employing FeCl3-mediated cyclization of thiosemicarbazoneinto thiadiazoles and their subsequent Schiff bases formation using p-TSA in benzene. To understand the interaction of the proposed compounds with β-lactamase (Protein Data Bank [PDB] ID: 3UDI), a molecular docking was performed. All the compounds demonstrated an optimal binding affinity with β-lactamase (−8.17 to −9.75 kcal/mol) and showed crucial hydrogen bonds and π–π interaction with the leading amino acids Arg298, Ala300, and Val391 located at the active site of β-lactamase. The in vitro antibacterial activity of the desired molecules was conducted against few gram-positive and Gram-negative bacterial strains using amoxicillinas reference drug. The compound having p-hydroxyphenyl substituent (3c) was found to be potentially effective to inhibit P. aeruginosa and E. coli with MIC value 7.5 μg/mL and 9.0 μg/mL, respectively, whereas other compounds exhibited moderate to good activity. Altogether, the primary in-vitro screening of newly synthesized thiophene hybridized thiadiazole Schiff bases opens a new venture towards the development of promising alternatives of β-lactamase inhibitors as anti-bacterial agents.
期刊介绍:
Indian Journal of Heterocyclic Chemistry is exclusively devoted to research in the area of heterocyclic chemistry. The journal publishes invited review articles and original research papers pertaining to structure and synthesis, mechanism of reactions, spectral studies, biologically active compounds, bio-chemical studies, physicochemical work, phytochemistry etc.