{"title":"Multimodal Data Fusion to Detect Preknowledge Test-Taking Behavior Using Machine Learning","authors":"Kaiwen Man","doi":"10.1177/00131644231193625","DOIUrl":null,"url":null,"abstract":"In various fields, including college admission, medical board certifications, and military recruitment, high-stakes decisions are frequently made based on scores obtained from large-scale assessments. These decisions necessitate precise and reliable scores that enable valid inferences to be drawn about test-takers. However, the ability of such tests to provide reliable, accurate inference on a test-taker’s performance could be jeopardized by aberrant test-taking practices, for instance, practicing real items prior to the test. As a result, it is crucial for administrators of such assessments to develop strategies that detect potential aberrant test-takers after data collection. The aim of this study is to explore the implementation of machine learning methods in combination with multimodal data fusion strategies that integrate bio-information technology, such as eye-tracking, and psychometric measures, including response times and item responses, to detect aberrant test-taking behaviors in technology-assisted remote testing settings.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00131644231193625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In various fields, including college admission, medical board certifications, and military recruitment, high-stakes decisions are frequently made based on scores obtained from large-scale assessments. These decisions necessitate precise and reliable scores that enable valid inferences to be drawn about test-takers. However, the ability of such tests to provide reliable, accurate inference on a test-taker’s performance could be jeopardized by aberrant test-taking practices, for instance, practicing real items prior to the test. As a result, it is crucial for administrators of such assessments to develop strategies that detect potential aberrant test-takers after data collection. The aim of this study is to explore the implementation of machine learning methods in combination with multimodal data fusion strategies that integrate bio-information technology, such as eye-tracking, and psychometric measures, including response times and item responses, to detect aberrant test-taking behaviors in technology-assisted remote testing settings.