Clasificación de calidad de manzana para monitoreo de cosechabilidad utilizando visión por computador y algoritmos de aprendizaje profundo

Q4 Engineering
Andrés Alejandro Garcés Cadena, Oswaldo Aníbal Menéndez Granizo, Edgar Patricio Córdova, Alvaro Javier Prado Romo
{"title":"Clasificación de calidad de manzana para monitoreo de cosechabilidad utilizando visión por computador y algoritmos de aprendizaje profundo","authors":"Andrés Alejandro Garcés Cadena, Oswaldo Aníbal Menéndez Granizo, Edgar Patricio Córdova, Alvaro Javier Prado Romo","doi":"10.4067/s0718-33052023000100215","DOIUrl":null,"url":null,"abstract":"La industria agrícola comprende una actividad de marcada influencia sobre el crecimiento económico y calidad de vida de las personas. Dada la necesidad de cubrir la demanda de alimentos debido al crecimiento poblacional, actualmente se requieren de sistemas capaces de optimizar el rendimiento del cultivo. Es así como este trabajo contribuye con una herramienta práctica para asistir al agricultor en tareas de reconocimiento de calidad de fruta, la misma que le permite mejorar el proceso de cuantificación de manzana y monitoreo del estado cosechable de la fruta mediante el uso visión por computador y algoritmos de aprendizaje profundo. El sistema propuesto presenta i) la detección del tipo de manzanas para el conteo y ii) la clasificación de su calidad para la inspección y validación de la fruta por categoría. Para la detección del tipo de manzana se utiliza el modelo de red de detección SSD-MobileNet y para la segmentación de instancias de calidad a nivel de píxel se emplea una red neuronal convolucional rápida FCN-ResNet 18. El sistema fue entrenado, validado y puesto a prueba en varios ensayos experimentales de laboratorio y campo, empleando dos bases de datos de imágenes construidas en ambientes controlados y en entornos agrícolas reales. Los resultados muestran que es posible detectar y clasificar el estado de calidad de manzanas durante la cosecha, obteniendo una precisión que varían entre el 86,7% y 92,6% para la detección y de 94,7 ± 2,5% para la segmentación, superando en ambos casos los resultados presentados en trabajos relacionados.","PeriodicalId":40015,"journal":{"name":"Ingeniare","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingeniare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0718-33052023000100215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

La industria agrícola comprende una actividad de marcada influencia sobre el crecimiento económico y calidad de vida de las personas. Dada la necesidad de cubrir la demanda de alimentos debido al crecimiento poblacional, actualmente se requieren de sistemas capaces de optimizar el rendimiento del cultivo. Es así como este trabajo contribuye con una herramienta práctica para asistir al agricultor en tareas de reconocimiento de calidad de fruta, la misma que le permite mejorar el proceso de cuantificación de manzana y monitoreo del estado cosechable de la fruta mediante el uso visión por computador y algoritmos de aprendizaje profundo. El sistema propuesto presenta i) la detección del tipo de manzanas para el conteo y ii) la clasificación de su calidad para la inspección y validación de la fruta por categoría. Para la detección del tipo de manzana se utiliza el modelo de red de detección SSD-MobileNet y para la segmentación de instancias de calidad a nivel de píxel se emplea una red neuronal convolucional rápida FCN-ResNet 18. El sistema fue entrenado, validado y puesto a prueba en varios ensayos experimentales de laboratorio y campo, empleando dos bases de datos de imágenes construidas en ambientes controlados y en entornos agrícolas reales. Los resultados muestran que es posible detectar y clasificar el estado de calidad de manzanas durante la cosecha, obteniendo una precisión que varían entre el 86,7% y 92,6% para la detección y de 94,7 ± 2,5% para la segmentación, superando en ambos casos los resultados presentados en trabajos relacionados.
利用计算机视觉和深度学习算法对苹果品质进行作物监测分类
行业/ 1997Ã-cola包括大幅影响经济增长活动ó肠胃和人的生活质量。考虑到由于人口增长而需要满足粮食需求,目前需要能够优化作物产量的系统。是asÃ-这工作手段与práctica协助农民在侦察任务水果质量,使改进cuantificación苹果汁和监视国家收获水果使用visión和计算机深度学习算法。拟议系统介绍(一)detección型苹果倒计时和㈡clasificaciÃn³的质量inspección和validación水果为categorÃ- a。苹果为detección型网络模型用于detección SSD-MobileNet和segmentación p级质量实例Ã-xel采用神经网络convolucional rá获取FCN-ResNet 18。系统训练,验证和测试几个实验室和试验,使用两个数据库字段imá修建的基因在控制环境和环境/ 1997Ã-colas实际。结果表明可以探测和分类质量状况苹果收获期间,获得precisió,varÃ-an 86.7%和92.6%之间detección和94.7±2.5%为segmentaciÃn³,克服这两种相关成果提交作品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ingeniare
Ingeniare Engineering-Engineering (all)
CiteScore
0.90
自引率
0.00%
发文量
32
审稿时长
10 weeks
期刊介绍: Ingeniare. Revista chilena de ingeniería is published periodically, is printed in three issues per volume annually, publishing original articles by professional and academic authors belonging to public or private organisations, from Chile and the rest of the world, with the purpose of disseminating their experiences in engineering science and technology in the areas of Electronics, Electricity, Computing and Information Sciences, Mechanical, Acoustic, Industrial and Engineering Teaching. The abbreviated title of the journal is Ingeniare. Rev. chil. ing. , which should be used in bibliographies, footnotes and bibliographical references and strips.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信