Michel Nieuwoudt , Paul Jarrett , Hannah Matthews , Michelle Locke , Marco Bonesi , Brydon Burnett , Hannah Holtkamp , Claude Aguergaray , Ira Mautner , Thom Minnee , M. Cather Simpson
{"title":"Portable System for In-Clinic Differentiation of Skin Cancers from Benign Skin Lesions and Inflammatory Dermatoses","authors":"Michel Nieuwoudt , Paul Jarrett , Hannah Matthews , Michelle Locke , Marco Bonesi , Brydon Burnett , Hannah Holtkamp , Claude Aguergaray , Ira Mautner , Thom Minnee , M. Cather Simpson","doi":"10.1016/j.xjidi.2023.100238","DOIUrl":null,"url":null,"abstract":"<div><p>The exquisite sensitivity of Raman spectroscopy for detecting biomolecular changes in skin cancer has previously been explored; however, this mostly required analysis of excised tissue samples using bulky, immobile laboratory instrumentation. In this study, the technique was translated for clinical use with a portable Raman system and customized fiber optic probe and applied to differentiation of skin cancers from benign lesions and inflammatory dermatoses. The aim was to provide an easy-to-use, easy-to-manage assessment tool for clinicians to use in their daily patient examination routine to perform rapid Raman measurements of skin lesions in vivo. Using this system, >867 spectra were measured in vivo from 330 patients with a wide variety of different benign skin lesions (n = 603), inflammatory dermatoses (n = 140), and skin cancers (n = 124). Ethnicities represented were 70% European; 16% Asian; 6% Māori; 5% Pacific people; and 4% Middle East, Latin American, and African. Accurate differentiation of skin cancers from benign lesions and inflammatory dermatoses was achieved using partial least squares discriminant analysis, with area under curve for the receiver operator curves for external validation sets ranging from 0.916 to 0.958. This study shows evidence for robust clinical translation of Raman spectroscopy for rapid, accurate diagnosis of skin cancer.</p></div>","PeriodicalId":73548,"journal":{"name":"JID innovations : skin science from molecules to population health","volume":"4 1","pages":"Article 100238"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667026723000644/pdfft?md5=27035fe51a51ec08108ee2d135bb69b9&pid=1-s2.0-S2667026723000644-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JID innovations : skin science from molecules to population health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667026723000644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The exquisite sensitivity of Raman spectroscopy for detecting biomolecular changes in skin cancer has previously been explored; however, this mostly required analysis of excised tissue samples using bulky, immobile laboratory instrumentation. In this study, the technique was translated for clinical use with a portable Raman system and customized fiber optic probe and applied to differentiation of skin cancers from benign lesions and inflammatory dermatoses. The aim was to provide an easy-to-use, easy-to-manage assessment tool for clinicians to use in their daily patient examination routine to perform rapid Raman measurements of skin lesions in vivo. Using this system, >867 spectra were measured in vivo from 330 patients with a wide variety of different benign skin lesions (n = 603), inflammatory dermatoses (n = 140), and skin cancers (n = 124). Ethnicities represented were 70% European; 16% Asian; 6% Māori; 5% Pacific people; and 4% Middle East, Latin American, and African. Accurate differentiation of skin cancers from benign lesions and inflammatory dermatoses was achieved using partial least squares discriminant analysis, with area under curve for the receiver operator curves for external validation sets ranging from 0.916 to 0.958. This study shows evidence for robust clinical translation of Raman spectroscopy for rapid, accurate diagnosis of skin cancer.