{"title":"Forces of fully nonlinear interfacial periodic waves on a cylindrical pile in a two-layer fluid with free-surface boundary conditions","authors":"Jiyang Li , Zeng Liu , Jie Cui","doi":"10.1016/j.joes.2023.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>In the frame of fully nonlinear potential flow theory, series solutions of interfacial periodic gravity waves in a two-layer fluid with free surface are obtained by the homotopy analysis method (HAM), and the related wave forces on a vertical cylinder are analyzed. The solution procedure of the HAM for the interfacial wave model with rigid upper surface is further developed to consider the free surface boundary. And forces of nonlinear interfacial periodic waves are estimated by both the classical and modified Morison equations. It is found that the estimated wave forces by the classical Morison equation are more conservative than those by the modified Morison’s formula, and the relative error between the total inertial forces calculated by these two kinds of Morison’s formulae remains over <span><math><mrow><mn>25</mn><mo>%</mo></mrow></math></span> for most cases unless the upper and lower layer depths are both large enough. It demonstrates that the convective acceleration neglected in the classical Morison equation is rather important for inertial force exerted by not only internal solitary waves but also interfacial periodic waves. All of these should further deepen our understanding of internal periodic wave forces on a vertical marine riser.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 6","pages":"Pages 662-674"},"PeriodicalIF":13.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468013323000293/pdfft?md5=7e15f4835bfc8b1774732c70edf4ed5d&pid=1-s2.0-S2468013323000293-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocean Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468013323000293","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
In the frame of fully nonlinear potential flow theory, series solutions of interfacial periodic gravity waves in a two-layer fluid with free surface are obtained by the homotopy analysis method (HAM), and the related wave forces on a vertical cylinder are analyzed. The solution procedure of the HAM for the interfacial wave model with rigid upper surface is further developed to consider the free surface boundary. And forces of nonlinear interfacial periodic waves are estimated by both the classical and modified Morison equations. It is found that the estimated wave forces by the classical Morison equation are more conservative than those by the modified Morison’s formula, and the relative error between the total inertial forces calculated by these two kinds of Morison’s formulae remains over for most cases unless the upper and lower layer depths are both large enough. It demonstrates that the convective acceleration neglected in the classical Morison equation is rather important for inertial force exerted by not only internal solitary waves but also interfacial periodic waves. All of these should further deepen our understanding of internal periodic wave forces on a vertical marine riser.
期刊介绍:
The Journal of Ocean Engineering and Science (JOES) serves as a platform for disseminating original research and advancements in the realm of ocean engineering and science.
JOES encourages the submission of papers covering various aspects of ocean engineering and science.