Tumour-microenvironment-responsive Na2S2O8 nanocrystals encapsulated in hollow organosilica–metal–phenolic networks for cycling persistent tumour-dynamic therapy

Yang Li, Jinyan Lin, Yueyang He, Kaiyuan Wang, Cailin Huang, Ruifeng Zhang, Xiaolong Liu
{"title":"Tumour-microenvironment-responsive Na2S2O8 nanocrystals encapsulated in hollow organosilica–metal–phenolic networks for cycling persistent tumour-dynamic therapy","authors":"Yang Li,&nbsp;Jinyan Lin,&nbsp;Yueyang He,&nbsp;Kaiyuan Wang,&nbsp;Cailin Huang,&nbsp;Ruifeng Zhang,&nbsp;Xiaolong Liu","doi":"10.1002/EXP.20230054","DOIUrl":null,"url":null,"abstract":"<p>Traditional tumour-dynamic therapy still inevitably faces the critical challenge of limited reactive oxygen species (ROS)-generating efficiency due to tumour hypoxia, extreme pH condition for Fenton reaction, and unsustainable mono-catalytic reaction. To fight against these issues, we skilfully develop a tumour-microenvironment-driven yolk-shell nanoreactor to realize the high-efficiency persistent dynamic therapy via cascade-responsive dual cycling amplification of •SO<sub>4</sub><sup>−</sup>/•OH radicals. The nanoreactor with an ultrahigh payload of free radical initiator is designed by encapsulating the Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> nanocrystals into hollow tetra-sulphide-introduced mesoporous silica (HTSMS) and afterward enclosed by epigallocatechin gallate (EG)-Fe(II) cross-linking. Within the tumour microenvironment, the intracellular glutathione (GSH) can trigger the tetra-sulphide cleavage of nanoreactors to explosively release Na<sup>+</sup>/S<sub>2</sub>O<sub>8</sub><sup>2</sup><b><sup>−</sup></b>/Fe<sup>2+</sup> and EG. Then a sequence of cascade reactions will be activated to efficiently generate •SO<sub>4</sub><sup>−</sup> (Fe<sup>2+</sup>-catalyzed S<sub>2</sub>O<sub>8</sub><sup>2</sup><b><sup>−</sup></b> oxidation), proton (•SO<sub>4</sub><sup>−</sup>-catalyzed H<sub>2</sub>O decomposition), and •OH (proton-intensified Fenton oxidation). Synchronously, the oxidation-generated Fe<sup>3+</sup> will be in turn recovered into Fe<sup>2+</sup> by excessive EG to circularly amplify •SO<sub>4</sub><sup>−</sup>/•OH radicals. The nanoreactors can also disrupt the intracellular osmolarity homeostasis by Na<sup>+</sup> overload and weaken the ROS-scavenging systems by GSH exhaustion to further amplify oxidative stress. Our yolk–shell nanoreactors can efficiently eradicate tumours via multiple oxidative stress amplification, which will provide a perspective to explore dynamic therapy.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20230054","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration (Beijing, China)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/EXP.20230054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional tumour-dynamic therapy still inevitably faces the critical challenge of limited reactive oxygen species (ROS)-generating efficiency due to tumour hypoxia, extreme pH condition for Fenton reaction, and unsustainable mono-catalytic reaction. To fight against these issues, we skilfully develop a tumour-microenvironment-driven yolk-shell nanoreactor to realize the high-efficiency persistent dynamic therapy via cascade-responsive dual cycling amplification of •SO4/•OH radicals. The nanoreactor with an ultrahigh payload of free radical initiator is designed by encapsulating the Na2S2O8 nanocrystals into hollow tetra-sulphide-introduced mesoporous silica (HTSMS) and afterward enclosed by epigallocatechin gallate (EG)-Fe(II) cross-linking. Within the tumour microenvironment, the intracellular glutathione (GSH) can trigger the tetra-sulphide cleavage of nanoreactors to explosively release Na+/S2O82/Fe2+ and EG. Then a sequence of cascade reactions will be activated to efficiently generate •SO4 (Fe2+-catalyzed S2O82 oxidation), proton (•SO4-catalyzed H2O decomposition), and •OH (proton-intensified Fenton oxidation). Synchronously, the oxidation-generated Fe3+ will be in turn recovered into Fe2+ by excessive EG to circularly amplify •SO4/•OH radicals. The nanoreactors can also disrupt the intracellular osmolarity homeostasis by Na+ overload and weaken the ROS-scavenging systems by GSH exhaustion to further amplify oxidative stress. Our yolk–shell nanoreactors can efficiently eradicate tumours via multiple oxidative stress amplification, which will provide a perspective to explore dynamic therapy.

Abstract Image

包裹在中空有机硅-金属-酚醛网络中的肿瘤微环境响应型 Na2S2O8 纳米晶体,用于循环持久肿瘤动态疗法
传统的肿瘤动态疗法仍然不可避免地面临着肿瘤缺氧导致的活性氧(ROS)生成效率有限、芬顿反应的极端pH条件以及单催化反应不可持续等严峻挑战。为了解决这些问题,我们巧妙地开发了一种肿瘤微环境驱动的卵黄壳纳米反应器,通过级联响应的 -SO4-/-OH 自由基双循环放大,实现高效的持续动态治疗。通过将 Na2S2O8 纳米晶体封装到中空四硫化介孔二氧化硅(HTSMS)中,再通过表没食子儿茶素没食子酸酯(EG)-铁(II)交联,设计出了具有超高自由基引发剂载荷的纳米反应器。在肿瘤微环境中,细胞内谷胱甘肽(GSH)会引发纳米反应器的四硫化物裂解,爆炸性地释放出 Na+/S2O82-/Fe2+ 和 EG。然后,一连串的级联反应将被激活,从而有效地产生-SO4-(Fe2+ 催化的 S2O82- 氧化)、质子(-SO4-催化的 H2O 分解)和-OH(质子强化的 Fenton 氧化)。与此同时,氧化产生的 Fe3+ 又会被过量的 EG 还原成 Fe2+,从而循环放大 -SO4-/-OH 自由基。纳米反应器还能通过 Na+ 过载破坏细胞内渗透压的平衡,并通过 GSH 的耗竭削弱 ROS 清除系统,从而进一步放大氧化应激。我们的卵黄壳纳米反应器可以通过多重氧化应激放大有效地消除肿瘤,这将为探索动态疗法提供一个视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信