Uconnect: Synergistic Spectral CT Reconstruction With U-Nets Connecting the Energy Bins

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Zhihan Wang;Alexandre Bousse;Franck Vermet;Jacques Froment;Béatrice Vedel;Alessandro Perelli;Jean-Pierre Tasu;Dimitris Visvikis
{"title":"Uconnect: Synergistic Spectral CT Reconstruction With U-Nets Connecting the Energy Bins","authors":"Zhihan Wang;Alexandre Bousse;Franck Vermet;Jacques Froment;Béatrice Vedel;Alessandro Perelli;Jean-Pierre Tasu;Dimitris Visvikis","doi":"10.1109/TRPMS.2023.3330045","DOIUrl":null,"url":null,"abstract":"Spectral computed tomography (CT) offers the possibility to reconstruct attenuation images at different energy levels, which can be then used for material decomposition. However, traditional methods reconstruct each energy bin individually and are vulnerable to noise. In this article, we propose a novel synergistic method for spectral CT reconstruction, namely, Uconnect. It utilizes trained convolutional neural networks (CNNs) to connect the energy bins to a latent image so that the full binned data is used synergistically. We experiment on two types of low-dose data: 1) simulated and 2) real patient data. Qualitative and quantitative analysis show that our proposed Uconnect outperforms state-of-the-art model-based iterative reconstruction (MBIR) techniques as well as CNN-based denoising.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10308615/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Spectral computed tomography (CT) offers the possibility to reconstruct attenuation images at different energy levels, which can be then used for material decomposition. However, traditional methods reconstruct each energy bin individually and are vulnerable to noise. In this article, we propose a novel synergistic method for spectral CT reconstruction, namely, Uconnect. It utilizes trained convolutional neural networks (CNNs) to connect the energy bins to a latent image so that the full binned data is used synergistically. We experiment on two types of low-dose data: 1) simulated and 2) real patient data. Qualitative and quantitative analysis show that our proposed Uconnect outperforms state-of-the-art model-based iterative reconstruction (MBIR) techniques as well as CNN-based denoising.
Uconnect:利用 U 型网络连接能量盒进行协同频谱 CT 重构
光谱计算机断层扫描(CT)可以重建不同能量级别的衰减图像,然后用于材料分解。然而,传统的方法是单独重建每个能级,容易受到噪声的影响。在本文中,我们提出了一种用于光谱 CT 重建的新型协同方法,即 Uconnect。它利用训练有素的卷积神经网络(CNN)将能量分区与潜在图像连接起来,从而协同使用完整的分区数据。我们对两种低剂量数据进行了实验:1)模拟数据;2)真实患者数据。定性和定量分析表明,我们提出的 Uconnect 优于最先进的基于模型的迭代重建(MBIR)技术和基于 CNN 的去噪技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信