Cell Design Considerations and Impact on Energy Density—A Practical Approach to EV Cell Design

IF 2.6 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
William Yourey
{"title":"Cell Design Considerations and Impact on Energy Density—A Practical Approach to EV Cell Design","authors":"William Yourey","doi":"10.3390/wevj14100279","DOIUrl":null,"url":null,"abstract":"Higher-energy-density, Wh L−1 or Wh kg−1, lithium-ion cells are one of the critical advancements required for the implementation of electric vehicles. This increase leads to a longer drive distance between recharges. Aside from material development, full lithium-ion cell design parameters have the potential to greatly influence fabricated cell energy density. The following work highlights the impact of these full-cell design parameters, investigating the effect of a negative to positive capacity ratio, positive electrode porosity, positive electrode active material content, and overall charge voltage on stack volumetric energy density. Decreasing the N:P ratio or increasing active material content results in an almost identical volumetric energy density increase: ~4%. Decreasing the positive electrode porosity from 40–30% or increasing the charge voltage from 4.2–4.35 V also results in an almost identical increase in volumetric energy density: ~5.5%. Combining all design changes has the potential to increase stack volumetric energy density by 20% compared to the baseline cell design.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":"61 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj14100279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Higher-energy-density, Wh L−1 or Wh kg−1, lithium-ion cells are one of the critical advancements required for the implementation of electric vehicles. This increase leads to a longer drive distance between recharges. Aside from material development, full lithium-ion cell design parameters have the potential to greatly influence fabricated cell energy density. The following work highlights the impact of these full-cell design parameters, investigating the effect of a negative to positive capacity ratio, positive electrode porosity, positive electrode active material content, and overall charge voltage on stack volumetric energy density. Decreasing the N:P ratio or increasing active material content results in an almost identical volumetric energy density increase: ~4%. Decreasing the positive electrode porosity from 40–30% or increasing the charge voltage from 4.2–4.35 V also results in an almost identical increase in volumetric energy density: ~5.5%. Combining all design changes has the potential to increase stack volumetric energy density by 20% compared to the baseline cell design.
电池设计考虑因素及其对能量密度的影响——电动汽车电池设计的实用方法
更高能量密度(Wh L−1或Wh kg−1)的锂离子电池是实现电动汽车所需的关键进步之一。这种增加导致更长的驾驶距离之间的充电。除了材料开发之外,全锂离子电池的设计参数有可能极大地影响制造电池的能量密度。接下来的工作重点是这些全电池设计参数的影响,研究负极与正极容量比、正极孔隙率、正极活性物质含量和总充电电压对堆叠体积能量密度的影响。降低N:P比或增加活性物质含量的结果几乎相同,体积能量密度增加约4%。将正极孔隙率从40-30%降低或将充电电压从4.2-4.35 V增加也会导致几乎相同的体积能量密度增加:~5.5%。结合所有设计变化,与基准电池设计相比,堆叠体积能量密度有可能增加20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
World Electric Vehicle Journal
World Electric Vehicle Journal Engineering-Automotive Engineering
CiteScore
4.50
自引率
8.70%
发文量
196
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信