Broadband, tunable wavelength conversion using tapered silicon fibers extending up to 2.4 μm

IF 5.4 1区 物理与天体物理 Q1 OPTICS
APL Photonics Pub Date : 2023-10-01 DOI:10.1063/5.0158734
Dong Wu, Than S. Saini, Shiyu Sun, Meng Huang, Qiang Fu, Thomas W. Hawkins, John Ballato, Anna C. Peacock
{"title":"Broadband, tunable wavelength conversion using tapered silicon fibers extending up to 2.4 <i>μ</i>m","authors":"Dong Wu, Than S. Saini, Shiyu Sun, Meng Huang, Qiang Fu, Thomas W. Hawkins, John Ballato, Anna C. Peacock","doi":"10.1063/5.0158734","DOIUrl":null,"url":null,"abstract":"Wavelength conversion via four-wave mixing holds great promise for the construction of broadband and tunable light sources at wavelengths beyond 2 μm. In this work, we design and fabricate a tapered silicon core optical fiber with a dispersion profile that supports efficient conversion spanning the telecom band up to the edge of the mid-infrared spectral region over an extended propagation length. By pumping with a fiber laser centered around 1.99 μm, a tuning range of 690 nm has been measured, although simulations predict that a bandwidth of up to 1255 nm could be observed if a suitable seed source was available. Conversion efficiencies of ∼−30 dB have been obtained over a bandwidth of 380 nm when using an input pump power of only 6 dBm, with a maximum efficiency of −18 dB achieved when the conversion overlaps the strong Raman gain of the silicon core.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"37 1","pages":"0"},"PeriodicalIF":5.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0158734","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Wavelength conversion via four-wave mixing holds great promise for the construction of broadband and tunable light sources at wavelengths beyond 2 μm. In this work, we design and fabricate a tapered silicon core optical fiber with a dispersion profile that supports efficient conversion spanning the telecom band up to the edge of the mid-infrared spectral region over an extended propagation length. By pumping with a fiber laser centered around 1.99 μm, a tuning range of 690 nm has been measured, although simulations predict that a bandwidth of up to 1255 nm could be observed if a suitable seed source was available. Conversion efficiencies of ∼−30 dB have been obtained over a bandwidth of 380 nm when using an input pump power of only 6 dBm, with a maximum efficiency of −18 dB achieved when the conversion overlaps the strong Raman gain of the silicon core.
宽带,可调谐的波长转换使用锥形硅光纤延伸至2.4 μm
通过四波混频进行波长转换,对于构建波长超过2 μm的宽带可调谐光源具有很大的前景。在这项工作中,我们设计并制造了一种具有色散轮廓的锥形硅芯光纤,该光纤支持在扩展的传播长度上跨越电信频段到中红外光谱区域边缘的有效转换。通过泵浦以1.99 μm为中心的光纤激光器,测量了690 nm的调谐范围,尽管模拟预测如果有合适的种子源,可以观察到高达1255 nm的带宽。当输入泵浦功率仅为6 dBm时,在380 nm的带宽上获得了−−30 dB的转换效率,当转换与硅芯的强拉曼增益重叠时,实现了−18 dB的最大效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
APL Photonics
APL Photonics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍: APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信