Hybrid representative sampling of social media

Taylor Beauvais
{"title":"Hybrid representative sampling of social media","authors":"Taylor Beauvais","doi":"10.1177/07591063231196162","DOIUrl":null,"url":null,"abstract":"Social media communities are understudied due to the difficulty of obtaining data with any amount of generalizability. This research proposes a method of hybrid probability sampling of social media ecosystems (collections of communities) using network theory, stratified sampling methods, theoretical saturation, and widely available social media activity statistics. Because of the unique venue of research, these methods create an opt-in sample, where every member of a community is given an equal chance to participate. The proposed methods were then used to obtain a sample representative of a digital political ecosystem with a population size of 8 million. The results illuminate stark polarization resulting from algorithmic opinion aggregation, with implications in online extremism, media literacy, demographic representation in public discourse, and more.","PeriodicalId":210053,"journal":{"name":"Bulletin de Méthodologie Sociologique","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin de Méthodologie Sociologique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/07591063231196162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Social media communities are understudied due to the difficulty of obtaining data with any amount of generalizability. This research proposes a method of hybrid probability sampling of social media ecosystems (collections of communities) using network theory, stratified sampling methods, theoretical saturation, and widely available social media activity statistics. Because of the unique venue of research, these methods create an opt-in sample, where every member of a community is given an equal chance to participate. The proposed methods were then used to obtain a sample representative of a digital political ecosystem with a population size of 8 million. The results illuminate stark polarization resulting from algorithmic opinion aggregation, with implications in online extremism, media literacy, demographic representation in public discourse, and more.
社交媒体的混合代表性抽样
由于难以获得具有任何通用性的数据,社交媒体社区的研究不足。本研究利用网络理论、分层抽样方法、理论饱和度和广泛可用的社交媒体活动统计数据,提出了一种社交媒体生态系统(社区集合)的混合概率抽样方法。由于研究的独特地点,这些方法创造了一个选择加入的样本,在这个样本中,社区的每个成员都有平等的参与机会。然后使用所提出的方法获得一个人口规模为800万的数字政治生态系统的样本代表。研究结果阐明了由算法意见聚合导致的严重两极分化,这对网络极端主义、媒体素养、公共话语中的人口代表性等方面都有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信