Kinematic Design and Prototyping of a Gripper with Grasping and Scooping Capabilities Driven by the Redundant Degrees of Freedom of a Parallel Robot

IF 2.2 4区 计算机科学 Q2 ENGINEERING, MECHANICAL
Charles-Antoine Beaulieu, Tan-Sy Nguyen, Thierry Laliberte, Clement Gosselin
{"title":"Kinematic Design and Prototyping of a Gripper with Grasping and Scooping Capabilities Driven by the Redundant Degrees of Freedom of a Parallel Robot","authors":"Charles-Antoine Beaulieu, Tan-Sy Nguyen, Thierry Laliberte, Clement Gosselin","doi":"10.1115/1.4063668","DOIUrl":null,"url":null,"abstract":"Abstract A new gripper design is proposed to offer grasping and scooping capabilities to a parallel robot. This enables the parallel robot to manipulate not only large objects, but also thin objects lying on flat surfaces. Moreover, this gripper is driven directly by the redundant degrees of freedom of the parallel robot to which it is integrated. Thus, by eliminating actuators from the gripper, weight is drastically reduced, thereby making it possible to take advantage of the full payload of the parallel robot. The kinematic architecture of the gripper is first presented, notably, the kinematic implications of using an epicyclic mechanism. Then, the kinematic model developed to integrate the gripper to a (6+3)-degree-of-freedom robot is presented. Trajectory planning strategies for both grasping and scooping are then presented together with the parameters used. Finally, the experimental validation of these manipulation methods is discussed briefly to assess foreseeable improvements to the gripper itself as well as the trajectory planning aspect of the manipulation methods.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063668","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A new gripper design is proposed to offer grasping and scooping capabilities to a parallel robot. This enables the parallel robot to manipulate not only large objects, but also thin objects lying on flat surfaces. Moreover, this gripper is driven directly by the redundant degrees of freedom of the parallel robot to which it is integrated. Thus, by eliminating actuators from the gripper, weight is drastically reduced, thereby making it possible to take advantage of the full payload of the parallel robot. The kinematic architecture of the gripper is first presented, notably, the kinematic implications of using an epicyclic mechanism. Then, the kinematic model developed to integrate the gripper to a (6+3)-degree-of-freedom robot is presented. Trajectory planning strategies for both grasping and scooping are then presented together with the parameters used. Finally, the experimental validation of these manipulation methods is discussed briefly to assess foreseeable improvements to the gripper itself as well as the trajectory planning aspect of the manipulation methods.
并联机器人冗余自由度驱动抓取铲爪的运动学设计与原型研究
摘要提出了一种新的夹持器设计方案,为并联机器人提供抓取和舀取能力。这使得并联机器人不仅可以操纵大型物体,也可以操纵平面上的薄物体。此外,该夹持器直接由其所集成的并联机器人的冗余自由度驱动。因此,通过从夹持器中消除致动器,重量大大减少,从而可以充分利用并联机器人的有效载荷。首先介绍了夹持器的运动学结构,特别是使用周转机构的运动学含义。然后,建立了将夹持器与(6+3)自由度机器人集成的运动学模型。然后给出了抓取和铲取的轨迹规划策略以及所使用的参数。最后,简要讨论了这些操作方法的实验验证,以评估对夹持器本身以及操作方法的轨迹规划方面的可预见的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
15.40%
发文量
131
审稿时长
4.5 months
期刊介绍: Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信