{"title":"The effect of friction stir welding on the microstructure and mechanical properties of the dissimilar SS304 and Al7075-T6 alloy joints","authors":"Ranjan Kumar, Manjaiah M, M J Davidson","doi":"10.1080/09507116.2023.2271391","DOIUrl":null,"url":null,"abstract":"AbstractThis study focuses on the friction stir welding (FSW) of dissimilar materials, Al7075 alloy and SS304 stainless steel, in a butt configuration. The objective is to examine the impact of different operating conditions, including tool rotational speed, transverse speed, and tool offset, on the FSW process of the dissimilar sheets. Mechanical properties, specifically the ultimate tensile strength, were found to be influenced by rotational speed. Higher rotational speed resulted in decreased tensile strength due to increased heat generation in the weld zone, leading to the formation of a thicker intermetallic layer. Higher tool rotational speed and greater transverse feed rate improved weld joint performance. Microstructural changes and deformation properties were investigated using optical microscopy (OM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The FSW process caused significant grain refinement, creating a fine and equiaxed recrystallized grain structure. Intermetallic compounds like Al13Fe14, Al3Fe2, and Al3Mg2 were identified in the interface zone. In summary, this study provides valuable insights into the FSW of dissimilar materials. It sheds light on mechanical properties, microstructural changes, and intermetallic compound formation in the welded joint, contributing to the understanding of FSW for dissimilar materials.Keywords: Friction stir weldingAl 7075SS304microstructureDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":23605,"journal":{"name":"Welding International","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09507116.2023.2271391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractThis study focuses on the friction stir welding (FSW) of dissimilar materials, Al7075 alloy and SS304 stainless steel, in a butt configuration. The objective is to examine the impact of different operating conditions, including tool rotational speed, transverse speed, and tool offset, on the FSW process of the dissimilar sheets. Mechanical properties, specifically the ultimate tensile strength, were found to be influenced by rotational speed. Higher rotational speed resulted in decreased tensile strength due to increased heat generation in the weld zone, leading to the formation of a thicker intermetallic layer. Higher tool rotational speed and greater transverse feed rate improved weld joint performance. Microstructural changes and deformation properties were investigated using optical microscopy (OM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The FSW process caused significant grain refinement, creating a fine and equiaxed recrystallized grain structure. Intermetallic compounds like Al13Fe14, Al3Fe2, and Al3Mg2 were identified in the interface zone. In summary, this study provides valuable insights into the FSW of dissimilar materials. It sheds light on mechanical properties, microstructural changes, and intermetallic compound formation in the welded joint, contributing to the understanding of FSW for dissimilar materials.Keywords: Friction stir weldingAl 7075SS304microstructureDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.
期刊介绍:
Welding International provides comprehensive English translations of complete articles, selected from major international welding journals, including: Journal of Japan Welding Society - Japan Journal of Light Metal Welding and Construction - Japan Przeglad Spawalnictwa - Poland Quarterly Journal of Japan Welding Society - Japan Revista de Metalurgia - Spain Rivista Italiana della Saldatura - Italy Soldagem & Inspeção - Brazil Svarochnoe Proizvodstvo - Russia Welding International is a well-established and widely respected journal and the translators are carefully chosen with each issue containing a balanced selection of between 15 and 20 articles. The articles cover research techniques, equipment and process developments, applications and material and are not available elsewhere in English. This journal provides a valuable and unique service for those needing to keep up-to-date on the latest developments in welding technology in non-English speaking countries.