Group identities on symmetric units under oriented involutions in group algebras

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alexander Holguín-Villa, John H. Castillo
{"title":"Group identities on symmetric units under oriented involutions in group algebras","authors":"Alexander Holguín-Villa, John H. Castillo","doi":"10.1007/s11587-023-00809-6","DOIUrl":null,"url":null,"abstract":"Abstract Let $$\\mathbb {F}G$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> denote the group algebra of a locally finite group G over the infinite field $$\\mathbb {F}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>F</mml:mi> </mml:math> with $$\\mathop {\\textrm{char}}\\nolimits (\\mathbb {F})\\ne 2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtext>char</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mo>)</mml:mo> <mml:mo>≠</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> , and let $$\\circledast :\\mathbb {F}G\\rightarrow \\mathbb {F}G$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>⊛</mml:mo> <mml:mo>:</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> <mml:mo>→</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> denote the involution defined by $$\\alpha =\\Sigma \\alpha _{g}g \\mapsto \\alpha ^\\circledast =\\Sigma \\alpha _{g}\\sigma (g)g^{*}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Σ</mml:mi> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mi>g</mml:mi> <mml:mo>↦</mml:mo> <mml:msup> <mml:mi>α</mml:mi> <mml:mo>⊛</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>Σ</mml:mi> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mi>σ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>g</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msup> <mml:mi>g</mml:mi> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , where $$\\sigma :G\\rightarrow \\{\\pm 1\\}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>σ</mml:mi> <mml:mo>:</mml:mo> <mml:mi>G</mml:mi> <mml:mo>→</mml:mo> <mml:mo>{</mml:mo> <mml:mo>±</mml:mo> <mml:mn>1</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> is a group homomorphism (called an orientation) and $$*$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:math> is an involution of the group G . In this paper we prove, under some assumptions, that if the $$\\circledast $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>⊛</mml:mo> </mml:math> -symmetric units of $$\\mathbb {F}G$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> satisfies a group identity then $$\\mathbb {F}G$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> satisfies a polynomial identity, i.e., we give an affirmative answer to a Conjecture of B. Hartley in this setting. Moreover, in the case when the prime radical $$\\eta (\\mathbb {F}G)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>η</mml:mi> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> of $$\\mathbb {F}G$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> is nilpotent we characterize the groups for which the symmetric units $$\\mathcal {U}^+(\\mathbb {F}G)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>U</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> do satisfy a group identity.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11587-023-00809-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let $$\mathbb {F}G$$ F G denote the group algebra of a locally finite group G over the infinite field $$\mathbb {F}$$ F with $$\mathop {\textrm{char}}\nolimits (\mathbb {F})\ne 2$$ char ( F ) 2 , and let $$\circledast :\mathbb {F}G\rightarrow \mathbb {F}G$$ : F G F G denote the involution defined by $$\alpha =\Sigma \alpha _{g}g \mapsto \alpha ^\circledast =\Sigma \alpha _{g}\sigma (g)g^{*}$$ α = Σ α g g α = Σ α g σ ( g ) g , where $$\sigma :G\rightarrow \{\pm 1\}$$ σ : G { ± 1 } is a group homomorphism (called an orientation) and $$*$$ is an involution of the group G . In this paper we prove, under some assumptions, that if the $$\circledast $$ -symmetric units of $$\mathbb {F}G$$ F G satisfies a group identity then $$\mathbb {F}G$$ F G satisfies a polynomial identity, i.e., we give an affirmative answer to a Conjecture of B. Hartley in this setting. Moreover, in the case when the prime radical $$\eta (\mathbb {F}G)$$ η ( F G ) of $$\mathbb {F}G$$ F G is nilpotent we characterize the groups for which the symmetric units $$\mathcal {U}^+(\mathbb {F}G)$$ U + ( F G ) do satisfy a group identity.
群代数中有向对合下对称单位上的群恒等式
抽象Let $$\mathbb {F}G$$ fg表示无限域上的局部有限群G的群代数 $$\mathbb {F}$$ F with $$\mathop {\textrm{char}}\nolimits (\mathbb {F})\ne 2$$ char (F)≠2,让 $$\circledast :\mathbb {F}G\rightarrow \mathbb {F}G$$ : F G→F G表示由 $$\alpha =\Sigma \alpha _{g}g \mapsto \alpha ^\circledast =\Sigma \alpha _{g}\sigma (g)g^{*}$$ α = Σ α g g∑α _ (l) = Σ α g Σ (g) g∗,其中 $$\sigma :G\rightarrow \{\pm 1\}$$ σ: g→ { ±1 } 群同态(称为取向)和 $$*$$ *是G群的对合。在某些假设下,我们证明了 $$\circledast $$ 的对称单位 $$\mathbb {F}G$$ F G满足群恒等式 $$\mathbb {F}G$$ F G满足一个多项式恒等式,即在这种情况下,我们对B. Hartley的一个猜想给出一个肯定的答案。而且,当质根 $$\eta (\mathbb {F}G)$$ 的η (F G) $$\mathbb {F}G$$ 如果G是幂零的,我们描述了对称单位所对应的群 $$\mathcal {U}^+(\mathbb {F}G)$$ U + (F G)满足群恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信