{"title":"The Development of Human Cortical Scene Processing","authors":"Daniel D. Dilks, Yaelan Jung, Frederik S. Kamps","doi":"10.1177/09637214231191772","DOIUrl":null,"url":null,"abstract":"Decades of research have uncovered the neural basis of place (or “scene”) processing in adulthood, revealing a set of three regions that respond selectively to visual scene information, each hypothesized to support distinct functions within scene processing (e.g., recognizing a particular kind of place versus navigating through it). Despite this considerable progress, surprisingly little is known about how these cortical regions develop. Here we review the limited evidence to date, highlighting the first few studies exploring the origins of cortical scene processing in infancy and the several studies addressing when the scene regions reach full maturity, unfortunately with inconsistent findings. This inconsistency likely stems from common pitfalls in pediatric functional magnetic resonance imaging, and accordingly, we discuss how these pitfalls may be avoided. Furthermore, we point out that almost all studies to date have focused only on general scene selectivity and argue that greater insight could be gleaned by instead exploring the more distinct functions of each region as well as their connectivity. Finally, with this last point in mind, we offer a novel hypothesis that scene regions supporting navigation (including the occipital place area and retrosplenial complex) mature later than those supporting scene categorization (including the parahippocampal place area).","PeriodicalId":10802,"journal":{"name":"Current Directions in Psychological Science","volume":"216 1","pages":"0"},"PeriodicalIF":7.4000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Directions in Psychological Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09637214231191772","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Decades of research have uncovered the neural basis of place (or “scene”) processing in adulthood, revealing a set of three regions that respond selectively to visual scene information, each hypothesized to support distinct functions within scene processing (e.g., recognizing a particular kind of place versus navigating through it). Despite this considerable progress, surprisingly little is known about how these cortical regions develop. Here we review the limited evidence to date, highlighting the first few studies exploring the origins of cortical scene processing in infancy and the several studies addressing when the scene regions reach full maturity, unfortunately with inconsistent findings. This inconsistency likely stems from common pitfalls in pediatric functional magnetic resonance imaging, and accordingly, we discuss how these pitfalls may be avoided. Furthermore, we point out that almost all studies to date have focused only on general scene selectivity and argue that greater insight could be gleaned by instead exploring the more distinct functions of each region as well as their connectivity. Finally, with this last point in mind, we offer a novel hypothesis that scene regions supporting navigation (including the occipital place area and retrosplenial complex) mature later than those supporting scene categorization (including the parahippocampal place area).
期刊介绍:
Current Directions in Psychological Science publishes reviews by leading experts covering all of scientific psychology and its applications. Each issue of Current Directions features a diverse mix of reports on various topics such as language, memory and cognition, development, the neural basis of behavior and emotions, various aspects of psychopathology, and theory of mind. These articles allow readers to stay apprised of important developments across subfields beyond their areas of expertise and bodies of research they might not otherwise be aware of. The articles in Current Directions are also written to be accessible to non-experts, making them ideally suited for use in the classroom as teaching supplements.