{"title":"Dual-laser pulse-patterned α-Co(OH)2/rGO heterointerface for accelerated water oxidation and surface phase-transition via in-situ Raman spectroscopy","authors":"Yeryeong Lee, Jayaraman Theerthagiri, Ahreum Min, Cheol Joo Moon, Myong Yong Choi","doi":"10.1002/eom2.12417","DOIUrl":null,"url":null,"abstract":"<p>The dynamic surface reconstruction of electrodes is a legible sign to understand the deep phase-transition mechanistic and electrocatalytic origin during the oxygen evolution reaction (OER). Herein, we report a dual-laser pulse-patterned heterointerface of α-Co(OH)<sub>2</sub> and reduced graphene oxide (rGO) nanosheets via pulsed laser irradiation in liquid (PLIL) to accelerate OER kinetics. α-Co(OH)<sub>2</sub> was formed from the OH<sup>−</sup> ions generated during the PLIL of GO at neutral pH. Co<sup>2+</sup> modulation in tetrahedral coordination sites benefits as an electrophilic surface for water oxidation. Few <i>d</i>-vacancies in Co<sup>2+</sup> increase its affinity toward oxygen, lowering the energy barrier and generating many CoOOH and CoO<sub>2</sub> active sites. rGO with an ordered <i>π</i>-conjugated system aids the surface adsorption of OOH*, O*, and OH* during OER. α-Co(OH)<sub>2</sub> surface phase-transition and OER mechanistic steps occurred via phase-reconstruction to CoOOH and CoO<sub>2</sub> reactive intermediates, uncovered using in situ electrochemical–Raman spectroscopy. Our findings in the dual-laser pulse strategy and the surface reconstruction correlation in active OER catalysts pave the path for paramount in multiple energy technologies.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12417","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic surface reconstruction of electrodes is a legible sign to understand the deep phase-transition mechanistic and electrocatalytic origin during the oxygen evolution reaction (OER). Herein, we report a dual-laser pulse-patterned heterointerface of α-Co(OH)2 and reduced graphene oxide (rGO) nanosheets via pulsed laser irradiation in liquid (PLIL) to accelerate OER kinetics. α-Co(OH)2 was formed from the OH− ions generated during the PLIL of GO at neutral pH. Co2+ modulation in tetrahedral coordination sites benefits as an electrophilic surface for water oxidation. Few d-vacancies in Co2+ increase its affinity toward oxygen, lowering the energy barrier and generating many CoOOH and CoO2 active sites. rGO with an ordered π-conjugated system aids the surface adsorption of OOH*, O*, and OH* during OER. α-Co(OH)2 surface phase-transition and OER mechanistic steps occurred via phase-reconstruction to CoOOH and CoO2 reactive intermediates, uncovered using in situ electrochemical–Raman spectroscopy. Our findings in the dual-laser pulse strategy and the surface reconstruction correlation in active OER catalysts pave the path for paramount in multiple energy technologies.