Efficient hyperbolic–parabolic models on multi-dimensional unbounded domains using an extended DG approach

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Federico Vismara, Tommaso Benacchio
{"title":"Efficient hyperbolic–parabolic models on multi-dimensional unbounded domains using an extended DG approach","authors":"Federico Vismara,&nbsp;Tommaso Benacchio","doi":"10.1002/fld.5239","DOIUrl":null,"url":null,"abstract":"<p>We introduce an extended discontinuous Galerkin discretization of hyperbolic–parabolic problems on multidimensional semi-infinite domains. Building on previous work on the one-dimensional case, we split the strip-shaped computational domain into a bounded region, discretized by means of discontinuous finite elements using Legendre basis functions, and an unbounded subdomain, where scaled Laguerre functions are used as a basis. Numerical fluxes at the interface allow for a seamless coupling of the two regions. The resulting coupling strategy is shown to produce accurate numerical solutions in tests on both linear and nonlinear scalar and vectorial model problems. In addition, an efficient absorbing layer can be simulated in the semi-infinite part of the domain in order to damp outgoing signals with negligible spurious reflections at the interface. By tuning the scaling parameter of the Laguerre basis functions, the extended DG scheme simulates transient dynamics over large spatial scales with a substantial reduction in computational cost at a given accuracy level compared to standard single-domain discontinuous finite element techniques.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fld.5239","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5239","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce an extended discontinuous Galerkin discretization of hyperbolic–parabolic problems on multidimensional semi-infinite domains. Building on previous work on the one-dimensional case, we split the strip-shaped computational domain into a bounded region, discretized by means of discontinuous finite elements using Legendre basis functions, and an unbounded subdomain, where scaled Laguerre functions are used as a basis. Numerical fluxes at the interface allow for a seamless coupling of the two regions. The resulting coupling strategy is shown to produce accurate numerical solutions in tests on both linear and nonlinear scalar and vectorial model problems. In addition, an efficient absorbing layer can be simulated in the semi-infinite part of the domain in order to damp outgoing signals with negligible spurious reflections at the interface. By tuning the scaling parameter of the Laguerre basis functions, the extended DG scheme simulates transient dynamics over large spatial scales with a substantial reduction in computational cost at a given accuracy level compared to standard single-domain discontinuous finite element techniques.

Abstract Image

使用扩展 DG 方法在多维无界域上建立高效双曲抛物线模型
我们对多维半无限域上的双曲-抛物问题引入了一种扩展的非连续伽勒金离散化方法。基于之前在一维情况下所做的工作,我们将条形计算域划分为一个有界区域和一个无界子域,前者通过使用 Legendre 基函数的非连续有限元进行离散化,后者则使用缩放的 Laguerre 函数作为基函数。界面上的数值通量可实现两个区域的无缝耦合。在对线性和非线性标量和矢量模型问题的测试中,证明了由此产生的耦合策略能产生精确的数值解。此外,还可以在域的半无限部分模拟一个有效的吸收层,以阻尼传出信号,同时忽略界面上的虚假反射。与标准单域非连续有限元技术相比,通过调整拉盖尔基函数的缩放参数,扩展 DG 方案可模拟大空间尺度的瞬态动力学,并在给定精度水平下大幅降低计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal for Numerical Methods in Fluids
International Journal for Numerical Methods in Fluids 物理-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
111
审稿时长
8 months
期刊介绍: The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction. Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review. The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信