NONREALIZABILITY OF CERTAIN REPRESENTATIONS IN FUSION SYSTEMS

IF 0.5 4区 数学 Q3 MATHEMATICS
Bob Oliver
{"title":"NONREALIZABILITY OF CERTAIN REPRESENTATIONS IN FUSION SYSTEMS","authors":"Bob Oliver","doi":"10.1017/s1446788723000022","DOIUrl":null,"url":null,"abstract":"Abstract For a finite abelian p -group A and a subgroup $\\Gamma \\le \\operatorname {\\mathrm {Aut}}(A)$ , we say that the pair $(\\Gamma ,A)$ is fusion realizable if there is a saturated fusion system ${\\mathcal {F}}$ over a finite p -group $S\\ge A$ such that $C_S(A)=A$ , $\\operatorname {\\mathrm {Aut}}_{{\\mathcal {F}}}(A)=\\Gamma $ as subgroups of $\\operatorname {\\mathrm {Aut}}(A)$ , and . In this paper, we develop tools to show that certain representations are not fusion realizable in this sense. For example, we show, for $p=2$ or $3$ and $\\Gamma $ one of the Mathieu groups, that the only ${\\mathbb {F}}_p\\Gamma $ -modules that are fusion realizable (up to extensions by trivial modules) are the Todd modules and in some cases their duals.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1446788723000022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract For a finite abelian p -group A and a subgroup $\Gamma \le \operatorname {\mathrm {Aut}}(A)$ , we say that the pair $(\Gamma ,A)$ is fusion realizable if there is a saturated fusion system ${\mathcal {F}}$ over a finite p -group $S\ge A$ such that $C_S(A)=A$ , $\operatorname {\mathrm {Aut}}_{{\mathcal {F}}}(A)=\Gamma $ as subgroups of $\operatorname {\mathrm {Aut}}(A)$ , and . In this paper, we develop tools to show that certain representations are not fusion realizable in this sense. For example, we show, for $p=2$ or $3$ and $\Gamma $ one of the Mathieu groups, that the only ${\mathbb {F}}_p\Gamma $ -modules that are fusion realizable (up to extensions by trivial modules) are the Todd modules and in some cases their duals.
融合系统中某些表征的不可实现性
摘要对于有限abel p群a和子群$\Gamma \le \operatorname {\mathrm {Aut}}(A)$,如果在有限p群$S\ge A$上存在一个饱和融合系统${\mathcal {F}}$,使得$C_S(A)=A$, $\operatorname {\mathrm {Aut}}_{{\mathcal {F}}}(A)=\Gamma $为$\operatorname {\mathrm {Aut}}(A)$的子群,和,则对$(\Gamma ,A)$是可融合的。在本文中,我们开发了一些工具来证明某些表示在这种意义上是不可融合实现的。例如,我们表明,对于$p=2$或$3$和$\Gamma $中的一个Mathieu群,唯一可实现融合的${\mathbb {F}}_p\Gamma $ -模块(直到由琐碎模块扩展)是Todd模块,在某些情况下它们的对偶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信