{"title":"Integrating biochar and bacteria for sustainable remediation of metal-contaminated soils","authors":"Peng Ouyang, Mathiyazhagan Narayanan, Xiaojun Shi, Xinping Chen, Zhenlun Li, Yongming Luo, Ying Ma","doi":"10.1007/s42773-023-00265-3","DOIUrl":null,"url":null,"abstract":"Abstract Due to anthropogenic activities, heavy metal (HM) pollution in soils has increased, resulting in severe ecological problems and posing a constant threat to human health. Among various remediation methods, bacterial remediation is a relatively clean, efficient, and minimally negative approach. However, bacterial agents face multiple environmental stresses, making them challenging to achieve long-lasting and stable restoration effects. To address this issue, supportive organic substances such as biochar can be added to the soil with bacteria. According to bibliometric studies, integrating biochar and bacteria is extensively researched and widely used for HM-contaminated soil remediation. By integrating biochar and bacteria, heavy metals in the soil can be remediated, and soil conditions can be improved over time. Bacteria can also better promote plant growth or contribute effectively to phytoremediation processes when assisted by biochar. However, the remediation agents integrating biochar and bacteria are still some distance away from large-scale use because of their high cost and possible environmental problems. Therefore, further discussion on the interaction between biochar and bacteria and the integration approach, along with their remediation efficiency and environmental friendliness, is needed to achieve sustainable remediation of HM-contaminated soils by integrating biochar and bacteria. This paper discusses the potential mechanisms of biochar-bacteria-metal interactions, current advancements in biochar-bacteria combinations for HM-contaminated soil treatment, and their application in sustainable remediation, analyzes the interaction between biochar and bacteria and compares the remediation effect of different ways and feedstocks to integrate biochar and bacteria. Finally, future directions of biochar-bacteria combinations are presented, along with evidence and strategies for improving their commercialization and implementation. Graphical Abstract","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"52 1","pages":"0"},"PeriodicalIF":13.1000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42773-023-00265-3","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Due to anthropogenic activities, heavy metal (HM) pollution in soils has increased, resulting in severe ecological problems and posing a constant threat to human health. Among various remediation methods, bacterial remediation is a relatively clean, efficient, and minimally negative approach. However, bacterial agents face multiple environmental stresses, making them challenging to achieve long-lasting and stable restoration effects. To address this issue, supportive organic substances such as biochar can be added to the soil with bacteria. According to bibliometric studies, integrating biochar and bacteria is extensively researched and widely used for HM-contaminated soil remediation. By integrating biochar and bacteria, heavy metals in the soil can be remediated, and soil conditions can be improved over time. Bacteria can also better promote plant growth or contribute effectively to phytoremediation processes when assisted by biochar. However, the remediation agents integrating biochar and bacteria are still some distance away from large-scale use because of their high cost and possible environmental problems. Therefore, further discussion on the interaction between biochar and bacteria and the integration approach, along with their remediation efficiency and environmental friendliness, is needed to achieve sustainable remediation of HM-contaminated soils by integrating biochar and bacteria. This paper discusses the potential mechanisms of biochar-bacteria-metal interactions, current advancements in biochar-bacteria combinations for HM-contaminated soil treatment, and their application in sustainable remediation, analyzes the interaction between biochar and bacteria and compares the remediation effect of different ways and feedstocks to integrate biochar and bacteria. Finally, future directions of biochar-bacteria combinations are presented, along with evidence and strategies for improving their commercialization and implementation. Graphical Abstract
期刊介绍:
Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.