S. Sivaneswari , K. Senthilkumaran , R. Sambathkumar
{"title":"Chronomodulated drug delivery systems for the treatment of hypertension: An overview","authors":"S. Sivaneswari , K. Senthilkumaran , R. Sambathkumar","doi":"10.1016/j.ipha.2023.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>This review paper aims to provide an overview of chronomodulated drug delivery systems for the treatment of hypertension. Hypertension is a chronic medical condition that affects millions of people worldwide, and effective treatment is crucial to prevent complications such as heart disease and stroke. Chronomodulated drug delivery utilises the concept of circadian rhythms to optimise drug efficacy and minimise side effects. The paper examines various chronomodulated drug delivery approaches, including pulsatile, delayed-release, and chronopharmaceutical systems, highlighting their advantages and limitations. Furthermore, the potential future developments in this field are discussed, emphasising the importance of personalised medicine and the integration of wearable technology for real-time monitoring and drug administration. Overall, this review provides valuable insights into the potential of chronomodulated drug delivery systems for improving patient outcomes and minimising side effects. By utilising chronomodulated drug delivery approaches, healthcare professionals can ensure that medications are released at specific times when they are most effective, thereby maximising their therapeutic benefits. Pulsatile drug delivery systems, for example, can mimic the body's natural circadian rhythm, allowing for targeted drug release during periods of peak efficacy. Delayed-release systems, on the other hand, can help reduce side effects by delivering drugs to specific regions of the gastrointestinal tract where they are better tolerated.</p></div>","PeriodicalId":100682,"journal":{"name":"Intelligent Pharmacy","volume":"2 1","pages":"Pages 155-160"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949866X23000874/pdfft?md5=2212ee84988098694fabd4d96bebf2b3&pid=1-s2.0-S2949866X23000874-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949866X23000874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This review paper aims to provide an overview of chronomodulated drug delivery systems for the treatment of hypertension. Hypertension is a chronic medical condition that affects millions of people worldwide, and effective treatment is crucial to prevent complications such as heart disease and stroke. Chronomodulated drug delivery utilises the concept of circadian rhythms to optimise drug efficacy and minimise side effects. The paper examines various chronomodulated drug delivery approaches, including pulsatile, delayed-release, and chronopharmaceutical systems, highlighting their advantages and limitations. Furthermore, the potential future developments in this field are discussed, emphasising the importance of personalised medicine and the integration of wearable technology for real-time monitoring and drug administration. Overall, this review provides valuable insights into the potential of chronomodulated drug delivery systems for improving patient outcomes and minimising side effects. By utilising chronomodulated drug delivery approaches, healthcare professionals can ensure that medications are released at specific times when they are most effective, thereby maximising their therapeutic benefits. Pulsatile drug delivery systems, for example, can mimic the body's natural circadian rhythm, allowing for targeted drug release during periods of peak efficacy. Delayed-release systems, on the other hand, can help reduce side effects by delivering drugs to specific regions of the gastrointestinal tract where they are better tolerated.