{"title":"Advanced Imaging Technologies for Assessing Tetralogy of Fallot: Insights Into Flow Dynamics","authors":"Michal Schäfer MD, PhD , Wadi Mawad MD","doi":"10.1016/j.cjcpc.2023.09.011","DOIUrl":null,"url":null,"abstract":"<div><p>Tetralogy of Fallot is the most common cyanotic congenital heart defect requiring surgical repair. Although surgical interventions have significantly reduced mortality, postrepair complications, such as pulmonary valve regurgitation and stenosis, may lead to adverse outcomes, including right ventricular dysfunction and increased risks of morbidity and mortality. This review explores the potential of advanced imaging technologies, including 4-dimensional–flow magnetic resonance imaging and high-frame-rate echocardiography, in providing valuable insights into blood flow dynamics and energy parameters. Quantitative measures, such as energy loss and vorticity, along with qualitative flow analysis, can provide additional insights into adverse haemodynamics at a potentially earlier and more reversible stage. Furthermore, personalized patient-specific information from these imaging modalities aids in guiding treatment decisions and monitoring postoperative interventions effectively. By characterizing flow patterns, these advanced imaging techniques hold great promise in improving the assessment and management of tetralogy of Fallot, providing tailored insights. However, further research and longitudinal studies are required to fully establish their clinical utility and potential impact on patient care.</p></div>","PeriodicalId":100249,"journal":{"name":"CJC Pediatric and Congenital Heart Disease","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772812923001379/pdfft?md5=3bfc0e3db3eb18d6801a6d1561e76a33&pid=1-s2.0-S2772812923001379-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CJC Pediatric and Congenital Heart Disease","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772812923001379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Tetralogy of Fallot is the most common cyanotic congenital heart defect requiring surgical repair. Although surgical interventions have significantly reduced mortality, postrepair complications, such as pulmonary valve regurgitation and stenosis, may lead to adverse outcomes, including right ventricular dysfunction and increased risks of morbidity and mortality. This review explores the potential of advanced imaging technologies, including 4-dimensional–flow magnetic resonance imaging and high-frame-rate echocardiography, in providing valuable insights into blood flow dynamics and energy parameters. Quantitative measures, such as energy loss and vorticity, along with qualitative flow analysis, can provide additional insights into adverse haemodynamics at a potentially earlier and more reversible stage. Furthermore, personalized patient-specific information from these imaging modalities aids in guiding treatment decisions and monitoring postoperative interventions effectively. By characterizing flow patterns, these advanced imaging techniques hold great promise in improving the assessment and management of tetralogy of Fallot, providing tailored insights. However, further research and longitudinal studies are required to fully establish their clinical utility and potential impact on patient care.