電気陽性な典型元素の励起状態を利用する光反応の開発

IF 0.2 4区 化学 Q4 CHEMISTRY, ORGANIC
Yuki Nagashima, Masanobu Uchiyama, Ken Tanaka
{"title":"電気陽性な典型元素の励起状態を利用する光反応の開発","authors":"Yuki Nagashima, Masanobu Uchiyama, Ken Tanaka","doi":"10.5059/yukigoseikyokaishi.81.930","DOIUrl":null,"url":null,"abstract":"Photoinduced reactions have received much attention as a powerful tool to access kinetically or thermodynamically prohibited reactions on the ground state. However, these reactions have been developed mainly by using electro-negative elements such as C, O, N, halogens as well as transition-metals. On the other hand, we have revealed the nature of chemical species including electro-positive main-group elements, such as boron (B), silicon (Si), and tin (Sn), on the excited state, developing the highly reactive and selective photoinduced reactions. For diboron (B-B) reagents, we designed the anionic photo-absorbing borate complex to enable a quadruple borylation reaction of terminal alkynes under ultraviolet irradiation. For stannyl (Sn) species, we revealed that the illumination of stannyl anions generates the excited triplet stannyl diradicals, which showed the orthogonality to traditional reagents (cations, anions, and radicals) to enable hydrostannylation of alkynes and defluorostannylation of fluoroarenes. For silylborane (Si-B) reagents, we developed dearomative triple elementalization (carbo-silaboration) reactions of quinolines by the excitation of silyl-borate complexes without the need for any catalyst.","PeriodicalId":17123,"journal":{"name":"Journal of Synthetic Organic Chemistry Japan","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synthetic Organic Chemistry Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5059/yukigoseikyokaishi.81.930","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Photoinduced reactions have received much attention as a powerful tool to access kinetically or thermodynamically prohibited reactions on the ground state. However, these reactions have been developed mainly by using electro-negative elements such as C, O, N, halogens as well as transition-metals. On the other hand, we have revealed the nature of chemical species including electro-positive main-group elements, such as boron (B), silicon (Si), and tin (Sn), on the excited state, developing the highly reactive and selective photoinduced reactions. For diboron (B-B) reagents, we designed the anionic photo-absorbing borate complex to enable a quadruple borylation reaction of terminal alkynes under ultraviolet irradiation. For stannyl (Sn) species, we revealed that the illumination of stannyl anions generates the excited triplet stannyl diradicals, which showed the orthogonality to traditional reagents (cations, anions, and radicals) to enable hydrostannylation of alkynes and defluorostannylation of fluoroarenes. For silylborane (Si-B) reagents, we developed dearomative triple elementalization (carbo-silaboration) reactions of quinolines by the excitation of silyl-borate complexes without the need for any catalyst.
利用电阳性典型元素激发态的光反应的开发
光诱导反应作为一种研究基态上动力学或热力学上被禁止的反应的有力工具,受到了广泛的关注。然而,这些反应主要是通过使用电负性元素如C、O、N、卤素以及过渡金属来发展的。另一方面,揭示了硼(B)、硅(Si)、锡(Sn)等电正主族元素在激发态上的性质,形成了高活性和选择性的光诱导反应。对于二硼(B-B)试剂,我们设计了阴离子光吸收硼酸盐配合物,使末端炔在紫外线照射下发生四重硼化反应。对于锡基(Sn),我们发现在锡基阴离子的照射下会产生激发的三态锡基二自由基,这与传统试剂(阳离子、阴离子和自由基)具有正交性,可以实现炔的氢锡化和氟芳烃的去氟锡化。对于硅硼烷(Si-B)试剂,我们在不需要任何催化剂的情况下,通过激发硅硼酸盐配合物,开发了喹啉类化合物的脱芳三元素化(碳硅硼化)反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信