{"title":"炭素-窒素不斉軸を有するアトロプ異性キナゾリノンの化学","authors":"Azusa Sato, Yuuki Fujimoto, Osamu Kitagawa","doi":"10.5059/yukigoseikyokaishi.81.978","DOIUrl":null,"url":null,"abstract":"Recently, atropisomers owing to the rotational restriction around an N-C single bond (N-C axially chiral compounds) have received much attention in the field of synthetic organic chemistry. In particular, the catalytic enantioselective synthesis of various N-C axially chiral compounds and their application to asymmetric reactions have been reported by many groups. Bioactive compounds possessing an N-C axially chiral structure have also been known. The typical example of such bioactive N-C axially chiral compounds is quinazolin-4-one derivatives bearing an ortho-substituted phenyl group at 3-position. However, the catalytic asymmetric synthesis of N-C axially chiral quinazlolin-4-one derivatives has never been reported. We succeeded in the enantioselective synthesis of 3-(2-bromophenyl)quinazolin-4-one derivatives (GABA agonist, mebroqualone derivatives) through chiral Pd-catalyzed reductive asymmetric desymmetrization with 3-(2,6-dibromophenyl)quinazolin-4-ones. Furthermore, it was found that the reaction of various alkyl halides with the enolate prepared from quinazolinone products proceeds in a highly diastereoselective manner by the asymmetric induction due to the N-C axial chirality. The self-disproportionation of enantiomers (SDE) and crystal structure (chirality-dependent halogen bond) in mebroqualone derivatives, the preparation of N-C axially chiral quinazolinones bearing an ortho-fluorophenyl group, and the creation of isotopic atropisomers based on N-C axially chiral quinazolinone scaffold are also described.","PeriodicalId":17123,"journal":{"name":"Journal of Synthetic Organic Chemistry Japan","volume":"38 1","pages":"0"},"PeriodicalIF":0.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synthetic Organic Chemistry Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5059/yukigoseikyokaishi.81.978","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, atropisomers owing to the rotational restriction around an N-C single bond (N-C axially chiral compounds) have received much attention in the field of synthetic organic chemistry. In particular, the catalytic enantioselective synthesis of various N-C axially chiral compounds and their application to asymmetric reactions have been reported by many groups. Bioactive compounds possessing an N-C axially chiral structure have also been known. The typical example of such bioactive N-C axially chiral compounds is quinazolin-4-one derivatives bearing an ortho-substituted phenyl group at 3-position. However, the catalytic asymmetric synthesis of N-C axially chiral quinazlolin-4-one derivatives has never been reported. We succeeded in the enantioselective synthesis of 3-(2-bromophenyl)quinazolin-4-one derivatives (GABA agonist, mebroqualone derivatives) through chiral Pd-catalyzed reductive asymmetric desymmetrization with 3-(2,6-dibromophenyl)quinazolin-4-ones. Furthermore, it was found that the reaction of various alkyl halides with the enolate prepared from quinazolinone products proceeds in a highly diastereoselective manner by the asymmetric induction due to the N-C axial chirality. The self-disproportionation of enantiomers (SDE) and crystal structure (chirality-dependent halogen bond) in mebroqualone derivatives, the preparation of N-C axially chiral quinazolinones bearing an ortho-fluorophenyl group, and the creation of isotopic atropisomers based on N-C axially chiral quinazolinone scaffold are also described.