{"title":"Hereditary classes of ordered sets of width at most two","authors":"Maurice Pouzet , Imed Zaguia","doi":"10.1016/j.ejc.2023.103813","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is a contribution to the study of hereditary classes of relational structures, these classes being quasi-ordered by embeddability. It deals with the specific case of ordered sets of width two and the corresponding bichains and incomparability graphs.</p><p>Several open problems about hereditary classes of relational structures which have been considered over the years have a positive answer in this case. For example, well-quasi-ordered hereditary classes of finite bipartite permutation graphs, respectively finite 321-avoiding permutations, have been characterized by Korpelainen, Lozin and Mayhill, respectively by Albert, Brignall, Ruškuc and Vatter.</p><p>In this paper we present an overview of properties of these hereditary classes in the framework of the Theory of Relations as presented by Roland Fraïssé.</p><p>We provide another proof of the results mentioned above. It is based on the existence of a countable universal poset of width two, obtained by the first author in 1978, his notion of multichainability (1978) (a kind of analog to letter-graphs), and metric properties of incomparability graphs. Using Laver’s theorem (1971) on better-quasi-ordering (bqo) of countable chains we prove that a wqo hereditary class of finite or countable bipartite permutation graphs is necessarily bqo. This gives a positive answer to a conjecture of Nash-Williams (1965) in this case. We extend a previous result of Albert et al. by proving that if a hereditary class of finite, respectively countable, bipartite permutation graphs is wqo, respectively bqo, then the corresponding hereditary classes of posets of width at most two and bichains are wqo, respectively bqo.</p><p>Several notions of labelled wqo are also considered. We prove that they are all equivalent in the case of bipartite permutation graphs, posets of width at most two and the corresponding bichains. We characterize hereditary classes of finite bipartite permutation graphs which remain wqo when labels from a wqo are added. Hereditary classes of posets of width two, bipartite permutation graphs and the corresponding bichains having finitely many bounds are also characterized.</p><p><span>We prove that a hereditary class of finite bipartite permutation graphs is not wqo if and only if it embeds the poset of finite subsets of </span><span><math><mi>N</mi></math></span> ordered by set inclusion. This answers a long standing conjecture of the first author in the case of bipartite permutation graphs.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669823001300","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is a contribution to the study of hereditary classes of relational structures, these classes being quasi-ordered by embeddability. It deals with the specific case of ordered sets of width two and the corresponding bichains and incomparability graphs.
Several open problems about hereditary classes of relational structures which have been considered over the years have a positive answer in this case. For example, well-quasi-ordered hereditary classes of finite bipartite permutation graphs, respectively finite 321-avoiding permutations, have been characterized by Korpelainen, Lozin and Mayhill, respectively by Albert, Brignall, Ruškuc and Vatter.
In this paper we present an overview of properties of these hereditary classes in the framework of the Theory of Relations as presented by Roland Fraïssé.
We provide another proof of the results mentioned above. It is based on the existence of a countable universal poset of width two, obtained by the first author in 1978, his notion of multichainability (1978) (a kind of analog to letter-graphs), and metric properties of incomparability graphs. Using Laver’s theorem (1971) on better-quasi-ordering (bqo) of countable chains we prove that a wqo hereditary class of finite or countable bipartite permutation graphs is necessarily bqo. This gives a positive answer to a conjecture of Nash-Williams (1965) in this case. We extend a previous result of Albert et al. by proving that if a hereditary class of finite, respectively countable, bipartite permutation graphs is wqo, respectively bqo, then the corresponding hereditary classes of posets of width at most two and bichains are wqo, respectively bqo.
Several notions of labelled wqo are also considered. We prove that they are all equivalent in the case of bipartite permutation graphs, posets of width at most two and the corresponding bichains. We characterize hereditary classes of finite bipartite permutation graphs which remain wqo when labels from a wqo are added. Hereditary classes of posets of width two, bipartite permutation graphs and the corresponding bichains having finitely many bounds are also characterized.
We prove that a hereditary class of finite bipartite permutation graphs is not wqo if and only if it embeds the poset of finite subsets of ordered by set inclusion. This answers a long standing conjecture of the first author in the case of bipartite permutation graphs.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.