On Liouville Theorems of a Hartree–Poisson system

IF 0.7 3区 数学 Q2 MATHEMATICS
Ling Li, Yutian Lei
{"title":"On Liouville Theorems of a Hartree–Poisson system","authors":"Ling Li, Yutian Lei","doi":"10.1017/s0013091523000603","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we are concerned with the non-existence of positive solutions of a Hartree–Poisson system: \\begin{equation*} \\left\\{ \\begin{aligned} &-\\Delta u=\\left(\\frac{1}{|x|^{n-2}}\\ast v^p\\right)v^{p-1},\\quad u \\gt 0\\ \\text{in} \\ \\mathbb{R}^{n},\\\\ &-\\Delta v=\\left(\\frac{1}{|x|^{n-2}}\\ast u^q\\right)u^{q-1},\\quad v \\gt 0\\ \\text{in} \\ \\mathbb{R}^{n}, \\end{aligned} \\right. \\end{equation*} where $n \\geq3$ and $\\min\\{p,q\\} \\gt 1$ . We prove that the system has no positive solution under a Serrin-type condition. In addition, the system has no positive radial classical solution in a Sobolev-type subcritical case. In addition, the system has no positive solution with some integrability in this Sobolev-type subcritical case. Finally, the relation between a Liouville theorem and the estimate of boundary blowing-up rates is given.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"98 4","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0013091523000603","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we are concerned with the non-existence of positive solutions of a Hartree–Poisson system: \begin{equation*} \left\{ \begin{aligned} &-\Delta u=\left(\frac{1}{|x|^{n-2}}\ast v^p\right)v^{p-1},\quad u \gt 0\ \text{in} \ \mathbb{R}^{n},\\ &-\Delta v=\left(\frac{1}{|x|^{n-2}}\ast u^q\right)u^{q-1},\quad v \gt 0\ \text{in} \ \mathbb{R}^{n}, \end{aligned} \right. \end{equation*} where $n \geq3$ and $\min\{p,q\} \gt 1$ . We prove that the system has no positive solution under a Serrin-type condition. In addition, the system has no positive radial classical solution in a Sobolev-type subcritical case. In addition, the system has no positive solution with some integrability in this Sobolev-type subcritical case. Finally, the relation between a Liouville theorem and the estimate of boundary blowing-up rates is given.
Hartree-Poisson系统的Liouville定理
摘要本文研究一类Hartree-Poisson系统\begin{equation*} \left\{ \begin{aligned} &-\Delta u=\left(\frac{1}{|x|^{n-2}}\ast v^p\right)v^{p-1},\quad u \gt 0\ \text{in} \ \mathbb{R}^{n},\\ &-\Delta v=\left(\frac{1}{|x|^{n-2}}\ast u^q\right)u^{q-1},\quad v \gt 0\ \text{in} \ \mathbb{R}^{n}, \end{aligned} \right. \end{equation*}的正解的不存在性,其中$n \geq3$和$\min\{p,q\} \gt 1$。证明了该系统在serrin型条件下无正解。此外,在sobolev型次临界情况下,系统不存在径向正解。此外,在sobolev型次临界情况下,系统不存在具有可积性的正解。最后,给出了一个Liouville定理与边界爆破率估计的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信