Casey Jameson, Bora Basyildiz, Daniel Moore, Kyle Clark, Zhexuan Gong
{"title":"Time optimal quantum state transfer in a fully-connected quantum computer","authors":"Casey Jameson, Bora Basyildiz, Daniel Moore, Kyle Clark, Zhexuan Gong","doi":"10.1088/2058-9565/ad0770","DOIUrl":null,"url":null,"abstract":"Abstract The speed limit of quantum state transfer (QST) in a system of interacting particles is not only important for quantum information processing, but also directly linked to Lieb-Robinson-type bounds that are crucial for understanding various aspects of quantum many-body physics. For strongly long-range interacting systems such as a fully-connected quantum computer, such a speed limit is still unknown. Here we develop a new Quantum Brachistochrone method that can incorporate inequality constraints on the Hamiltonian. This method allows us to prove an exactly tight bound on the speed of QST on a subclass of Hamiltonians experimentally realizable by a fully-connected quantum computer.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"64 10","pages":"0"},"PeriodicalIF":5.6000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad0770","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The speed limit of quantum state transfer (QST) in a system of interacting particles is not only important for quantum information processing, but also directly linked to Lieb-Robinson-type bounds that are crucial for understanding various aspects of quantum many-body physics. For strongly long-range interacting systems such as a fully-connected quantum computer, such a speed limit is still unknown. Here we develop a new Quantum Brachistochrone method that can incorporate inequality constraints on the Hamiltonian. This method allows us to prove an exactly tight bound on the speed of QST on a subclass of Hamiltonians experimentally realizable by a fully-connected quantum computer.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.