{"title":"Synthesis of Composite Titanate Photocatalyst via Molten Salt Processing and Its Enhanced Photocatalytic Properties","authors":"Yan Cheng, Chenxi Li, Shindume Lomboleni Hamukwaya, Guangdong Huang, Zengying Zhao","doi":"10.3390/nano13222944","DOIUrl":null,"url":null,"abstract":"Photocatalysis plays a pivotal role in environmental remediation and energy production and improving the efficiency of photocatalysts, yet enhancing its efficiency remains a challenge. Titanate has been claimed to be a very promising material amongst various photocatalysts in recent years. In this work, a novel composite photocatalyst of sodium titanate and potassium titanate was synthesized via a simple hydrothermal and molten salt calcination method. Low melting point nitrate was added in the calcination process, which helps reduce the calcination temperature. The as-prepared composite sample showed excellent photocatalytic performance compared with commercial P25 in the visible light range. According to the characterization of XRD, SEM, TEM, BET, UV–Vis, and photocatalytic property testing, the composite’s photocatalytic performance results are due to the dual optimization brought about by the layered structure and composite of titanium salts forming a heterojunction. We believe that the composite has significant application potential for the use of titanate in the field of photocatalysis. Notably, this study employed well-documented synthesis methods and adhered to established protocols for experimental procedures.","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"67 24","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nano13222944","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalysis plays a pivotal role in environmental remediation and energy production and improving the efficiency of photocatalysts, yet enhancing its efficiency remains a challenge. Titanate has been claimed to be a very promising material amongst various photocatalysts in recent years. In this work, a novel composite photocatalyst of sodium titanate and potassium titanate was synthesized via a simple hydrothermal and molten salt calcination method. Low melting point nitrate was added in the calcination process, which helps reduce the calcination temperature. The as-prepared composite sample showed excellent photocatalytic performance compared with commercial P25 in the visible light range. According to the characterization of XRD, SEM, TEM, BET, UV–Vis, and photocatalytic property testing, the composite’s photocatalytic performance results are due to the dual optimization brought about by the layered structure and composite of titanium salts forming a heterojunction. We believe that the composite has significant application potential for the use of titanate in the field of photocatalysis. Notably, this study employed well-documented synthesis methods and adhered to established protocols for experimental procedures.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.