A Bayesian Approach to Risk-Based Autonomy, with Applications to Contact-Based Drone Inspections

Sverre Velten Rothmund, Christoph Alexander Thieme, Ingrid Bouwer Utne, Tor Arne Johansen
{"title":"A Bayesian Approach to Risk-Based Autonomy, with Applications to Contact-Based Drone Inspections","authors":"Sverre Velten Rothmund, Christoph Alexander Thieme, Ingrid Bouwer Utne, Tor Arne Johansen","doi":"10.1007/s10846-023-01934-y","DOIUrl":null,"url":null,"abstract":"Abstract Enabling higher levels of autonomy while ensuring safety requires an increased ability to identify and handle internal faults and unforeseen changes in the environment. This article presents an approach to improve this ability for a robotic system executing a series of independent tasks by using a dynamic decision network (DDN). A simulation case study of an industrial inspection drone performing contact-based inspection is used to demonstrate the capabilities of the resulting system. The case study demonstrates that the system is able to infer the presence of internal faults and the state of the environment by fusing information over time. This information is used to make risk-informed decisions enabling the system to proactively avoid failure and to minimize the consequence of faults. Lastly, the case study demonstrates that evaluating past states with new information enables the system to identify and counteract previous sub-optimal actions.","PeriodicalId":404612,"journal":{"name":"Journal of Intelligent and Robotic Systems","volume":"2011 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent and Robotic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10846-023-01934-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Enabling higher levels of autonomy while ensuring safety requires an increased ability to identify and handle internal faults and unforeseen changes in the environment. This article presents an approach to improve this ability for a robotic system executing a series of independent tasks by using a dynamic decision network (DDN). A simulation case study of an industrial inspection drone performing contact-based inspection is used to demonstrate the capabilities of the resulting system. The case study demonstrates that the system is able to infer the presence of internal faults and the state of the environment by fusing information over time. This information is used to make risk-informed decisions enabling the system to proactively avoid failure and to minimize the consequence of faults. Lastly, the case study demonstrates that evaluating past states with new information enables the system to identify and counteract previous sub-optimal actions.
基于风险的自主贝叶斯方法及其在接触式无人机检测中的应用
在确保安全的同时实现更高级别的自主性,需要提高识别和处理内部故障和环境中不可预见变化的能力。本文提出了一种通过使用动态决策网络(DDN)来提高机器人系统执行一系列独立任务的能力的方法。工业检测无人机执行基于接触的检测的仿真案例研究用于演示所得到的系统的功能。案例研究表明,该系统能够通过融合随时间变化的信息来推断内部故障的存在和环境的状态。这些信息用于做出风险知情的决策,使系统能够主动避免故障,并将故障的后果降到最低。最后,案例研究表明,用新信息评估过去的状态使系统能够识别和抵消以前的次优行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信