c-Normality and coprime action in finite groups

IF 0.6 3区 数学 Q3 MATHEMATICS
A. Beltrán, C. Shao
{"title":"c-Normality and coprime action in finite groups","authors":"A. Beltrán,&nbsp;C. Shao","doi":"10.1007/s10474-023-01376-w","DOIUrl":null,"url":null,"abstract":"<div><p>A subgroup <i>H</i> of a finite group <i>G</i> is called <i>c</i>-normal if there \nexists a normal subgroup <i>N</i> in <i>G</i> such that <i>G = HN</i> and <span>\\(H\\cap N \\leq core_G (H)\\)</span>, the largest normal subgroup of <i>G</i> contained in <i>H</i>. <i>c</i>-Normality is a weaker form\nof normality, introduced by Y.M. Wang, that has led to interesting results and\nstructural criteria of finite groups. In this paper we study <i>c</i>-normality in the\ncoprime action setting so as to obtain several solvability and <i>p</i>-nilpotency criteria\nin terms of certain subsets of maximal invariant subgroups of a group or of its\nSylow subgroups.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"171 1","pages":"39 - 52"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10474-023-01376-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-023-01376-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A subgroup H of a finite group G is called c-normal if there exists a normal subgroup N in G such that G = HN and \(H\cap N \leq core_G (H)\), the largest normal subgroup of G contained in H. c-Normality is a weaker form of normality, introduced by Y.M. Wang, that has led to interesting results and structural criteria of finite groups. In this paper we study c-normality in the coprime action setting so as to obtain several solvability and p-nilpotency criteria in terms of certain subsets of maximal invariant subgroups of a group or of its Sylow subgroups.

有限群中的c-正态性与互素作用
有限群G的子群H称为c-正规,如果在G中存在一个正规子群N,使得G = HN和\(H\cap N \leq core_G (H)\), H中包含的G的最大正规子群c-正规是一种较弱的正规形式,由Y.M. Wang引入,它导致了有趣的结果和有限群的结构准则。本文研究了素作用集上的c-正态性,从而得到了群的极大不变子群或其sylow子群的某些子集的若干可解性和p-幂零性判据项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信