{"title":"Synthesis of tunable gold nanostars via 3D-printed microfluidic device with vibrating sharp-tip acoustic mixing","authors":"Kathrine Curtin, Toktam Godary, Peng Li","doi":"10.1007/s10404-023-02687-8","DOIUrl":null,"url":null,"abstract":"<div><p>Gold nanostars are valuable materials for nanomedicine, energy conversation, and catalysis. Microfluidic synthesis offers a simple and controlled means to produce nanoparticles as they offer precise fluid control and improve heat and mass transfer. 3D-printed microfluidics are a good alternative to PDMS devices because they are affordable to produce and can be more easily integrated with active mixing strategies. 3D-printed microfluidics has only been applied to the production of silver and gold nanospheres, but not complex structures like gold nanostars. Synthesis of gold nanostars requires highly effective mixing to ensure uniform nucleation and growth. In this work, we present a 3D-printed microfluidic device that utilizes an efficient vibrating sharp-tip acoustic mixing system to produce high-quality and reproducible gold nanostars via a seedless and surfactant-free method. The vibrating sharp-tip mixing device can mix three streams of fluid across ~ 300 μm within 7 ms. The device operates with flow rates ranging from 10 μL/min to 750 μL/min at low power requirements (2–45 mW). The optical properties of the resulting nanotars are easily tuned from 650 to 800 nm by modulating the input flow rate. Thus, the presented 3D-printed microfluidic device produces high-quality gold nanostars with tunable optical and physical properties suitable for extensive applications.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-023-02687-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Gold nanostars are valuable materials for nanomedicine, energy conversation, and catalysis. Microfluidic synthesis offers a simple and controlled means to produce nanoparticles as they offer precise fluid control and improve heat and mass transfer. 3D-printed microfluidics are a good alternative to PDMS devices because they are affordable to produce and can be more easily integrated with active mixing strategies. 3D-printed microfluidics has only been applied to the production of silver and gold nanospheres, but not complex structures like gold nanostars. Synthesis of gold nanostars requires highly effective mixing to ensure uniform nucleation and growth. In this work, we present a 3D-printed microfluidic device that utilizes an efficient vibrating sharp-tip acoustic mixing system to produce high-quality and reproducible gold nanostars via a seedless and surfactant-free method. The vibrating sharp-tip mixing device can mix three streams of fluid across ~ 300 μm within 7 ms. The device operates with flow rates ranging from 10 μL/min to 750 μL/min at low power requirements (2–45 mW). The optical properties of the resulting nanotars are easily tuned from 650 to 800 nm by modulating the input flow rate. Thus, the presented 3D-printed microfluidic device produces high-quality gold nanostars with tunable optical and physical properties suitable for extensive applications.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).