{"title":"A spatial model with vaccinations for COVID-19 in South Africa","authors":"Claudia Dresselhaus , Inger Fabris-Rotelli , Raeesa Manjoo-Docrat , Warren Brettenny , Jenny Holloway , Nada Abdelatif , Renate Thiede , Pravesh Debba , Nontembeko Dudeni-Tlhone","doi":"10.1016/j.spasta.2023.100792","DOIUrl":null,"url":null,"abstract":"<div><p>Since the emergence of the novel COVID-19 virus pandemic in December 2019, numerous mathematical models were published to assess the transmission dynamics of the disease, predict its future course, and evaluate the impact of different control measures. The simplest models make the basic assumptions that individuals are perfectly and evenly mixed and have the same social structures. Such assumptions become problematic for large developing countries that aggregate heterogeneous COVID-19 outbreaks in local areas. Thus, this paper proposes a spatial SEIRDV model that includes spatial vaccination coverage, spatial vulnerability, and level of mobility, to take into account the spatial–temporal clustering pattern of COVID-19 cases. The conclusion of this study is that immunity, government interventions, infectiousness and virulence are the main drivers of the spread of COVID-19. These factors should be taken into consideration when scientists, public policy makers and other stakeholders in the health community analyse, create and project future disease prevention scenarios. Such a model has a place for disease outbreaks that may occur in future, allowing for the inclusion of vaccination rates in a spatial manner.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211675323000672/pdfft?md5=a0cf209eb8ab971cff4bc9c66e005417&pid=1-s2.0-S2211675323000672-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675323000672","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Since the emergence of the novel COVID-19 virus pandemic in December 2019, numerous mathematical models were published to assess the transmission dynamics of the disease, predict its future course, and evaluate the impact of different control measures. The simplest models make the basic assumptions that individuals are perfectly and evenly mixed and have the same social structures. Such assumptions become problematic for large developing countries that aggregate heterogeneous COVID-19 outbreaks in local areas. Thus, this paper proposes a spatial SEIRDV model that includes spatial vaccination coverage, spatial vulnerability, and level of mobility, to take into account the spatial–temporal clustering pattern of COVID-19 cases. The conclusion of this study is that immunity, government interventions, infectiousness and virulence are the main drivers of the spread of COVID-19. These factors should be taken into consideration when scientists, public policy makers and other stakeholders in the health community analyse, create and project future disease prevention scenarios. Such a model has a place for disease outbreaks that may occur in future, allowing for the inclusion of vaccination rates in a spatial manner.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.