{"title":"Symmetrization and Local Existence of Strong Solutions for Diffuse Interface Fluid Models","authors":"Vincent Giovangigli, Yoann Le Calvez, Flore Nabet","doi":"10.1007/s00021-023-00825-4","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate compressible nonisothermal diffuse interface fluid models also termed capillary fluids. Such fluid models involve van der Waals’ gradient energy, Korteweg’s tensor, Dunn and Serrin’s heat flux as well as diffusive fluxes. The density gradient is added as an extra variable and the convective and capillary fluxes of the augmented system are identified by using the Legendre transform of entropy. The augmented system of equations is recast into a normal form with symmetric hyperbolic first order terms, symmetric dissipative second order terms and antisymmetric capillary second order terms. New a priori estimates are obtained for such augmented system of equations in normal form. The time derivatives of the parabolic components are less regular than for standard hyperbolic–parabolic systems and the strongly coupling antisymmetric fluxes yields new majorizing terms. Using the augmented system in normal form and the a priori estimates, local existence of strong solutions is established in an Hilbertian framework.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"25 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00825-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate compressible nonisothermal diffuse interface fluid models also termed capillary fluids. Such fluid models involve van der Waals’ gradient energy, Korteweg’s tensor, Dunn and Serrin’s heat flux as well as diffusive fluxes. The density gradient is added as an extra variable and the convective and capillary fluxes of the augmented system are identified by using the Legendre transform of entropy. The augmented system of equations is recast into a normal form with symmetric hyperbolic first order terms, symmetric dissipative second order terms and antisymmetric capillary second order terms. New a priori estimates are obtained for such augmented system of equations in normal form. The time derivatives of the parabolic components are less regular than for standard hyperbolic–parabolic systems and the strongly coupling antisymmetric fluxes yields new majorizing terms. Using the augmented system in normal form and the a priori estimates, local existence of strong solutions is established in an Hilbertian framework.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.