Symmetrization and Local Existence of Strong Solutions for Diffuse Interface Fluid Models

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Vincent Giovangigli, Yoann Le Calvez, Flore Nabet
{"title":"Symmetrization and Local Existence of Strong Solutions for Diffuse Interface Fluid Models","authors":"Vincent Giovangigli,&nbsp;Yoann Le Calvez,&nbsp;Flore Nabet","doi":"10.1007/s00021-023-00825-4","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate compressible nonisothermal diffuse interface fluid models also termed capillary fluids. Such fluid models involve van der Waals’ gradient energy, Korteweg’s tensor, Dunn and Serrin’s heat flux as well as diffusive fluxes. The density gradient is added as an extra variable and the convective and capillary fluxes of the augmented system are identified by using the Legendre transform of entropy. The augmented system of equations is recast into a normal form with symmetric hyperbolic first order terms, symmetric dissipative second order terms and antisymmetric capillary second order terms. New a priori estimates are obtained for such augmented system of equations in normal form. The time derivatives of the parabolic components are less regular than for standard hyperbolic–parabolic systems and the strongly coupling antisymmetric fluxes yields new majorizing terms. Using the augmented system in normal form and the a priori estimates, local existence of strong solutions is established in an Hilbertian framework.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"25 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00825-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate compressible nonisothermal diffuse interface fluid models also termed capillary fluids. Such fluid models involve van der Waals’ gradient energy, Korteweg’s tensor, Dunn and Serrin’s heat flux as well as diffusive fluxes. The density gradient is added as an extra variable and the convective and capillary fluxes of the augmented system are identified by using the Legendre transform of entropy. The augmented system of equations is recast into a normal form with symmetric hyperbolic first order terms, symmetric dissipative second order terms and antisymmetric capillary second order terms. New a priori estimates are obtained for such augmented system of equations in normal form. The time derivatives of the parabolic components are less regular than for standard hyperbolic–parabolic systems and the strongly coupling antisymmetric fluxes yields new majorizing terms. Using the augmented system in normal form and the a priori estimates, local existence of strong solutions is established in an Hilbertian framework.

扩散界面流体模型强解的对称性与局部存在性
我们研究可压缩的非等温扩散界面流体模型也称为毛细管流体。这种流体模型包括范德华的梯度能、Korteweg的张量、Dunn和Serrin的热通量以及扩散通量。增加了密度梯度作为一个额外的变量,利用熵的勒让德变换来识别增强系统的对流通量和毛细通量。将增广方程组转化为具有对称双曲一阶项、对称耗散二阶项和反对称毛细二阶项的标准形式。对这类增广方程组给出了新的正则型先验估计。抛物型分量的时间导数比标准双曲-抛物型系统的时间导数规则性更差,强耦合的反对称通量产生了新的大部分项。利用正规增广系统和先验估计,在Hilbertian框架下建立了强解的局部存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信