Thanasis Basdanis, Dimitris Valougeorgis, Felix Sharipov
{"title":"Viscous and thermal velocity slip coefficients via the linearized Boltzmann equation with ab initio potential","authors":"Thanasis Basdanis, Dimitris Valougeorgis, Felix Sharipov","doi":"10.1007/s10404-023-02681-0","DOIUrl":null,"url":null,"abstract":"<div><p>The viscous and thermal velocity slip coefficients of various monatomic gases are computed via the linearized classical Boltzmann equation, with ab initio potential, subject to Maxwell and Cercignani–Lampis boundary conditions. Both classical and quantum interatomic interactions are considered. Comparisons with hard sphere and Lennard–Jones potentials, as well as the linearized Shakhov model are performed. The produced database is dense, covers the whole range of the accommodation coefficients and is of high accuracy. Using symbolic regression, very accurate closed form expressions of the slip coefficients, easily implemented in the future computational and experimental works, are deduced. The thermal slip coefficient depends, much more than the viscous one, on the intermolecular potential. For example, in the case of diffuse scattering, the relative differences in the viscous slip coefficient data between HS and AI potentials are less than 4%, whilst the corresponding ones in the thermal slip coefficient data are about 6% for He, reaching 15% for Xe. Quantum effects are considered for He, at temperatures 1–10<sup>4</sup> K to deduce that deviations from the classical behaviour are not important in the viscous slip coefficient, but they become important in the thermal slip coefficient, where the differences between the classical and quantum approaches reach 15% at 1 K. The computational effort of solving the linearized Boltzmann equation with ab initio and Lennard–Jones potentials is the same. Since ab initio potentials do not contain any adjustable parameters, it is recommended to use them at any temperature.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-023-02681-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-023-02681-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The viscous and thermal velocity slip coefficients of various monatomic gases are computed via the linearized classical Boltzmann equation, with ab initio potential, subject to Maxwell and Cercignani–Lampis boundary conditions. Both classical and quantum interatomic interactions are considered. Comparisons with hard sphere and Lennard–Jones potentials, as well as the linearized Shakhov model are performed. The produced database is dense, covers the whole range of the accommodation coefficients and is of high accuracy. Using symbolic regression, very accurate closed form expressions of the slip coefficients, easily implemented in the future computational and experimental works, are deduced. The thermal slip coefficient depends, much more than the viscous one, on the intermolecular potential. For example, in the case of diffuse scattering, the relative differences in the viscous slip coefficient data between HS and AI potentials are less than 4%, whilst the corresponding ones in the thermal slip coefficient data are about 6% for He, reaching 15% for Xe. Quantum effects are considered for He, at temperatures 1–104 K to deduce that deviations from the classical behaviour are not important in the viscous slip coefficient, but they become important in the thermal slip coefficient, where the differences between the classical and quantum approaches reach 15% at 1 K. The computational effort of solving the linearized Boltzmann equation with ab initio and Lennard–Jones potentials is the same. Since ab initio potentials do not contain any adjustable parameters, it is recommended to use them at any temperature.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).