Existence, Uniqueness and Stability of Solutions of a Variable-Order Nonlinear Integro-differential Equation in a Banach Space

IF 0.8 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Pratibha Verma, Surabhi Tiwari
{"title":"Existence, Uniqueness and Stability of Solutions of a Variable-Order Nonlinear Integro-differential Equation in a Banach Space","authors":"Pratibha Verma,&nbsp;Surabhi Tiwari","doi":"10.1007/s40010-023-00852-w","DOIUrl":null,"url":null,"abstract":"<div><p>This article studies some important results in a Banach space for non-discrete nonlinear integro-differential equations with variable order <span>\\(0&lt;\\sigma (\\theta )&lt;1\\)</span></p><div><div><span>$$\\begin{aligned}{} &amp; {} D^{\\sigma (\\theta )}_{0,\\theta } \\vartheta (\\theta ) =\\eta (\\theta ,\\vartheta (\\theta ))+\\vartheta (\\theta ) \\int _{0}^{\\theta } \\kappa (\\theta ,a,\\vartheta (a)){\\textrm{d}}a,\\quad \\theta \\in \\aleph =[0,\\Theta ],\\quad \\Theta &gt;0, \\\\{} &amp; {} \\vartheta (0)=\\vartheta _0. \\end{aligned}$$</span></div></div><p>The contraction mapping principle and Krasnoselskii fixed-point theorem are employed to investigate the results, and Ulam–Hyers definitions are used for stability theory. Further, we have discussed the maximal and minimal solutions with the continuation theorem for <span>\\(\\sigma (\\theta ) \\rightarrow 1\\)</span>.</p></div>","PeriodicalId":744,"journal":{"name":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","volume":"93 4","pages":"587 - 600"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s40010-023-00852-w","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This article studies some important results in a Banach space for non-discrete nonlinear integro-differential equations with variable order \(0<\sigma (\theta )<1\)

$$\begin{aligned}{} & {} D^{\sigma (\theta )}_{0,\theta } \vartheta (\theta ) =\eta (\theta ,\vartheta (\theta ))+\vartheta (\theta ) \int _{0}^{\theta } \kappa (\theta ,a,\vartheta (a)){\textrm{d}}a,\quad \theta \in \aleph =[0,\Theta ],\quad \Theta >0, \\{} & {} \vartheta (0)=\vartheta _0. \end{aligned}$$

The contraction mapping principle and Krasnoselskii fixed-point theorem are employed to investigate the results, and Ulam–Hyers definitions are used for stability theory. Further, we have discussed the maximal and minimal solutions with the continuation theorem for \(\sigma (\theta ) \rightarrow 1\).

Banach空间中一类变阶非线性积分-微分方程解的存在唯一性与稳定性
本文研究了变阶非离散非线性积分-微分方程在Banach空间中的一些重要结果\(0<\sigma (\theta )<1\)$$\begin{aligned}{} & {} D^{\sigma (\theta )}_{0,\theta } \vartheta (\theta ) =\eta (\theta ,\vartheta (\theta ))+\vartheta (\theta ) \int _{0}^{\theta } \kappa (\theta ,a,\vartheta (a)){\textrm{d}}a,\quad \theta \in \aleph =[0,\Theta ],\quad \Theta >0, \\{} & {} \vartheta (0)=\vartheta _0. \end{aligned}$$,利用收缩映射原理和Krasnoselskii不动点定理对结果进行了研究,稳定性理论采用了Ulam-Hyers定义。进一步,我们用延拓定理讨论了\(\sigma (\theta ) \rightarrow 1\)的极大解和极小解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: To promote research in all the branches of Science & Technology; and disseminate the knowledge and advancements in Science & Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信