Hydrometallurgical detoxification and recycling of electric arc furnace dust

IF 5.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yang Xue, Xiaoming Liu, Chunbao (Charles) Xu, Yonghui Han
{"title":"Hydrometallurgical detoxification and recycling of electric arc furnace dust","authors":"Yang Xue,&nbsp;Xiaoming Liu,&nbsp;Chunbao (Charles) Xu,&nbsp;Yonghui Han","doi":"10.1007/s12613-023-2637-2","DOIUrl":null,"url":null,"abstract":"<div><p>Electric arc furnace dust (EAFD) is a hazardous waste but can also be a potential secondary resource for valuable metals, such as Zn and Fe. Given the increased awareness of carbon emission reduction, energy conservation, and environmental protection, hydrometallurgical technologies for the detoxification and resource use of EAFD have been developing rapidly. This work summarizes the generation mechanisms, compositions, and characteristics of EAFD and presents a critical review of various hydrometallurgical treatment methods for EAFD, e.g., acid leaching, alkaline leaching, salt leaching, and pretreatment-enhanced leaching methods. Simultaneously, the phase transformation mechanisms of zinc-containing components in acid and alkali solutions and pretreatment processes are expounded. Finally, two novel combined methods, i.e., oxygen pressure sulfuric acid leaching combined with composite catalyst preparation, and synergistic roasting of EAFD and municipal solid waste incineration fly ash combined with alkaline leaching, are proposed, which can provide future development directions to completely recycling EAFD by recovering valuable metals and using zinc residue.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 11","pages":"2076 - 2094"},"PeriodicalIF":5.6000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2637-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electric arc furnace dust (EAFD) is a hazardous waste but can also be a potential secondary resource for valuable metals, such as Zn and Fe. Given the increased awareness of carbon emission reduction, energy conservation, and environmental protection, hydrometallurgical technologies for the detoxification and resource use of EAFD have been developing rapidly. This work summarizes the generation mechanisms, compositions, and characteristics of EAFD and presents a critical review of various hydrometallurgical treatment methods for EAFD, e.g., acid leaching, alkaline leaching, salt leaching, and pretreatment-enhanced leaching methods. Simultaneously, the phase transformation mechanisms of zinc-containing components in acid and alkali solutions and pretreatment processes are expounded. Finally, two novel combined methods, i.e., oxygen pressure sulfuric acid leaching combined with composite catalyst preparation, and synergistic roasting of EAFD and municipal solid waste incineration fly ash combined with alkaline leaching, are proposed, which can provide future development directions to completely recycling EAFD by recovering valuable metals and using zinc residue.

电弧炉粉尘的湿法冶金脱毒及回收利用
电弧炉粉尘(EAFD)是一种危险废物,但也可能是锌和铁等有价金属的潜在二次资源。随着人们对碳减排、节能环保意识的增强,水法冶金脱毒和资源化利用EAFD技术得到了迅速发展。本文总结了EAFD的产生机理、组成和特征,并对EAFD的各种湿法冶金处理方法进行了综述,如酸浸、碱浸、盐浸和预处理强化浸出方法。同时,阐述了含锌组分在酸碱溶液中的相变机理及预处理工艺。最后,提出了氧压硫酸浸出结合复合催化剂制备、EAFD与城市生活垃圾焚烧飞灰协同焙烧结合碱性浸出两种新的组合方法,为EAFD回收有价金属和锌渣完全回收提供了未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
16.70%
发文量
205
审稿时长
2 months
期刊介绍: International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信