Properties of complex-valued power means of random variables and their applications

Pub Date : 2023-10-24 DOI:10.1007/s10474-023-01372-0
Y. Akaoka, K. Okamura, Y. Otobe
{"title":"Properties of complex-valued power means of random variables and their applications","authors":"Y. Akaoka,&nbsp;K. Okamura,&nbsp;Y. Otobe","doi":"10.1007/s10474-023-01372-0","DOIUrl":null,"url":null,"abstract":"<div><p>We consider power means of independent and identically distributed\n(i.i.d.) non-integrable random variables. The power mean is an example\nof a homogeneous quasi-arithmetic mean. Under certain conditions, several limit\ntheorems hold for the power mean, similar to the case of the arithmetic mean of\ni.i.d. integrable random variables. Our feature is that the generators of the power\nmeans are allowed to be complex-valued, which enables us to consider the power\nmean of random variables supported on the whole set of real numbers. We establish\nintegrabilities of the power mean of i.i.d. non-integrable random variables\nand a limit theorem for the variances of the power mean. We also consider the\nbehavior of the power mean as the parameter of the power varies. The complex-valued\npower means are unbiased, strongly-consistent, robust estimators for the\njoint of the location and scale parameters of the Cauchy distribution.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-023-01372-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider power means of independent and identically distributed (i.i.d.) non-integrable random variables. The power mean is an example of a homogeneous quasi-arithmetic mean. Under certain conditions, several limit theorems hold for the power mean, similar to the case of the arithmetic mean of i.i.d. integrable random variables. Our feature is that the generators of the power means are allowed to be complex-valued, which enables us to consider the power mean of random variables supported on the whole set of real numbers. We establish integrabilities of the power mean of i.i.d. non-integrable random variables and a limit theorem for the variances of the power mean. We also consider the behavior of the power mean as the parameter of the power varies. The complex-valued power means are unbiased, strongly-consistent, robust estimators for the joint of the location and scale parameters of the Cauchy distribution.

分享
查看原文
随机变量复值幂均值的性质及其应用
考虑独立同分布不可积随机变量的幂均值。幂均值是齐次拟算术均值的一个例子。在一定条件下,幂均值的几个极限定理成立,类似于i. id的算术均值。可积随机变量。我们的特征是幂均值的生成器允许是复值的,这使得我们能够考虑整个实数集合上支持的随机变量的幂均值。建立了i个不可积随机变量幂均值的可积性,并给出了幂均值方差的极限定理。我们还考虑了功率平均值随功率参数变化的行为。复值幂均值是柯西分布的位置参数和尺度参数联合的无偏、强一致、稳健估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信