{"title":"Regularity Criterion for the 2D Inviscid Boussinesq Equations","authors":"Menghan Gong, Zhuan Ye","doi":"10.1007/s00021-023-00832-5","DOIUrl":null,"url":null,"abstract":"<div><p>The question of whether the two-dimensional inviscid Boussinesq equations can develop a finite-time singularity from general initial data is a challenging open problem. In this paper, we obtain two new regularity criteria for the local-in-time smooth solution to the two-dimensional inviscid Boussinesq equations. Similar result is also valid for the nonlocal perturbation of the two-dimensional incompressible Euler equations.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"25 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00832-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The question of whether the two-dimensional inviscid Boussinesq equations can develop a finite-time singularity from general initial data is a challenging open problem. In this paper, we obtain two new regularity criteria for the local-in-time smooth solution to the two-dimensional inviscid Boussinesq equations. Similar result is also valid for the nonlocal perturbation of the two-dimensional incompressible Euler equations.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.