{"title":"The Lagrangian Formulation for Wave Motion with a Shear Current and Surface Tension","authors":"Conor Curtin, Rossen Ivanov","doi":"10.1007/s00021-023-00831-6","DOIUrl":null,"url":null,"abstract":"<div><p>The Lagrangian formulation for the irrotational wave motion is straightforward and follows from a Lagrangian functional which is the difference between the kinetic and the potential energy of the system. In the case of fluid with constant vorticity, which arises for example when a shear current is present, the separation of the energy into kinetic and potential is not at all obvious and neither is the Lagrangian formulation of the problem. Nevertheless, we use the known Hamiltonian formulation of the problem in this case to obtain the Lagrangian density function, and utilising the Euler–Lagrange equations we proceed to derive some model equations for different propagation regimes. While the long-wave regime reproduces the well known KdV equation, the short- and intermediate long wave regimes lead to highly nonlinear and nonlocal evolution equations.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00831-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Lagrangian formulation for the irrotational wave motion is straightforward and follows from a Lagrangian functional which is the difference between the kinetic and the potential energy of the system. In the case of fluid with constant vorticity, which arises for example when a shear current is present, the separation of the energy into kinetic and potential is not at all obvious and neither is the Lagrangian formulation of the problem. Nevertheless, we use the known Hamiltonian formulation of the problem in this case to obtain the Lagrangian density function, and utilising the Euler–Lagrange equations we proceed to derive some model equations for different propagation regimes. While the long-wave regime reproduces the well known KdV equation, the short- and intermediate long wave regimes lead to highly nonlinear and nonlocal evolution equations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.