{"title":"Technical factors affecting the performance of anion exchange membrane water electrolyzer","authors":"Xun Zhang, Yakang Li, Wei Zhao, Jiaxin Guo, Pengfei Yin, Tao Ling","doi":"10.1007/s12613-023-2648-z","DOIUrl":null,"url":null,"abstract":"<div><p>Anion exchange membrane (AEM) electrolysis is a promising membrane-based green hydrogen production technology. However, AEM electrolysis still remains in its infancy, and the performance of AEM electrolyzers is far behind that of well-developed alkaline and proton exchange membrane electrolyzers. Therefore, breaking through the technical barriers of AEM electrolyzers is critical. On the basis of the analysis of the electrochemical performance tested in a single cell, electrochemical impedance spectroscopy, and the number of active sites, we evaluated the main technical factors that affect AEM electrolyzers. These factors included catalyst layer manufacturing (e.g., catalyst, carbon black, and anionic ionomer) loadings, membrane electrode assembly, and testing conditions (e.g., the KOH concentration in the electrolyte, electrolyte feeding mode, and operating temperature). The underlying mechanisms of the effects of these factors on AEM electrolyzer performance were also revealed. The irreversible voltage loss in the AEM electrolyzer was concluded to be mainly associated with the kinetics of the electrode reaction and the transport of electrons, ions, and gas-phase products involved in electrolysis. Based on the study results, the performance and stability of AEM electrolyzers were significantly improved.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 11","pages":"2259 - 2269"},"PeriodicalIF":5.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2648-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Anion exchange membrane (AEM) electrolysis is a promising membrane-based green hydrogen production technology. However, AEM electrolysis still remains in its infancy, and the performance of AEM electrolyzers is far behind that of well-developed alkaline and proton exchange membrane electrolyzers. Therefore, breaking through the technical barriers of AEM electrolyzers is critical. On the basis of the analysis of the electrochemical performance tested in a single cell, electrochemical impedance spectroscopy, and the number of active sites, we evaluated the main technical factors that affect AEM electrolyzers. These factors included catalyst layer manufacturing (e.g., catalyst, carbon black, and anionic ionomer) loadings, membrane electrode assembly, and testing conditions (e.g., the KOH concentration in the electrolyte, electrolyte feeding mode, and operating temperature). The underlying mechanisms of the effects of these factors on AEM electrolyzer performance were also revealed. The irreversible voltage loss in the AEM electrolyzer was concluded to be mainly associated with the kinetics of the electrode reaction and the transport of electrons, ions, and gas-phase products involved in electrolysis. Based on the study results, the performance and stability of AEM electrolyzers were significantly improved.
期刊介绍:
International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.