Technical factors affecting the performance of anion exchange membrane water electrolyzer

IF 5.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xun Zhang, Yakang Li, Wei Zhao, Jiaxin Guo, Pengfei Yin, Tao Ling
{"title":"Technical factors affecting the performance of anion exchange membrane water electrolyzer","authors":"Xun Zhang,&nbsp;Yakang Li,&nbsp;Wei Zhao,&nbsp;Jiaxin Guo,&nbsp;Pengfei Yin,&nbsp;Tao Ling","doi":"10.1007/s12613-023-2648-z","DOIUrl":null,"url":null,"abstract":"<div><p>Anion exchange membrane (AEM) electrolysis is a promising membrane-based green hydrogen production technology. However, AEM electrolysis still remains in its infancy, and the performance of AEM electrolyzers is far behind that of well-developed alkaline and proton exchange membrane electrolyzers. Therefore, breaking through the technical barriers of AEM electrolyzers is critical. On the basis of the analysis of the electrochemical performance tested in a single cell, electrochemical impedance spectroscopy, and the number of active sites, we evaluated the main technical factors that affect AEM electrolyzers. These factors included catalyst layer manufacturing (e.g., catalyst, carbon black, and anionic ionomer) loadings, membrane electrode assembly, and testing conditions (e.g., the KOH concentration in the electrolyte, electrolyte feeding mode, and operating temperature). The underlying mechanisms of the effects of these factors on AEM electrolyzer performance were also revealed. The irreversible voltage loss in the AEM electrolyzer was concluded to be mainly associated with the kinetics of the electrode reaction and the transport of electrons, ions, and gas-phase products involved in electrolysis. Based on the study results, the performance and stability of AEM electrolyzers were significantly improved.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 11","pages":"2259 - 2269"},"PeriodicalIF":5.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2648-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Anion exchange membrane (AEM) electrolysis is a promising membrane-based green hydrogen production technology. However, AEM electrolysis still remains in its infancy, and the performance of AEM electrolyzers is far behind that of well-developed alkaline and proton exchange membrane electrolyzers. Therefore, breaking through the technical barriers of AEM electrolyzers is critical. On the basis of the analysis of the electrochemical performance tested in a single cell, electrochemical impedance spectroscopy, and the number of active sites, we evaluated the main technical factors that affect AEM electrolyzers. These factors included catalyst layer manufacturing (e.g., catalyst, carbon black, and anionic ionomer) loadings, membrane electrode assembly, and testing conditions (e.g., the KOH concentration in the electrolyte, electrolyte feeding mode, and operating temperature). The underlying mechanisms of the effects of these factors on AEM electrolyzer performance were also revealed. The irreversible voltage loss in the AEM electrolyzer was concluded to be mainly associated with the kinetics of the electrode reaction and the transport of electrons, ions, and gas-phase products involved in electrolysis. Based on the study results, the performance and stability of AEM electrolyzers were significantly improved.

影响阴离子交换膜水电解槽性能的技术因素
阴离子交换膜(AEM)电解是一种很有前途的膜基绿色制氢技术。然而,AEM电解仍处于起步阶段,AEM电解槽的性能远远落后于发达的碱性和质子交换膜电解槽。因此,突破AEM电解槽的技术壁垒至关重要。通过对AEM电解槽的电化学性能、电化学阻抗谱和活性位点数量的分析,对影响AEM电解槽的主要技术因素进行了评价。这些因素包括催化剂层制造(如催化剂、炭黑和阴离子离聚体)负载、膜电极组装和测试条件(如电解质中的KOH浓度、电解质进料模式和操作温度)。揭示了这些因素对AEM电解槽性能影响的潜在机制。AEM电解槽中不可逆电压损失主要与电极反应动力学以及电解过程中电子、离子和气相产物的输运有关。研究结果表明,AEM电解槽的性能和稳定性得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
16.70%
发文量
205
审稿时长
2 months
期刊介绍: International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信