Comparison of Effects of 2D and 3D Simulated Microgravity Rotation on Ossification in Larval Danio Rerio (Zebrafish)

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Jordan Eaton, Juan D. Carvajal-Agudelo, Tamara A. Franz-Odendaal
{"title":"Comparison of Effects of 2D and 3D Simulated Microgravity Rotation on Ossification in Larval Danio Rerio (Zebrafish)","authors":"Jordan Eaton,&nbsp;Juan D. Carvajal-Agudelo,&nbsp;Tamara A. Franz-Odendaal","doi":"10.1007/s12217-023-10077-6","DOIUrl":null,"url":null,"abstract":"<div><p>Simulated microgravity (SMG) is an environmental condition that affects bone density in vertebrates. Ground-based studies typically use a random positioning machine in either a 2D or a 3D mode to assess the effects of SMG, however the meaning of these results is difficult to compare between studies due to different experimental parameters. Here, we exposed larval <i>Danio rerio</i> at 3dpf to 23 h of SMG using a 2D and a 3D mode of rotation, using the same experimental setup. Zebrafish larvae were anaesthetized during the experiment. Our results showed that anesthesia (MS222) did not affect the amount of ossification while SMG-2D treatment slightly reduced the amount of ossification compared with the controls. On the other hand, SMG-3D treatment significantly reduced the overall ossification level of the skeleton. Specifically, the anterior end of the notochord, the ceratobranchial-5, the lower jaw articulation, the pharyngeal teeth, and the operculum were affected compared with control treatments. Overall, these results indicate that SMG-3D produced a more effective SMG effect compared with the SMG-2D. This research provides valuable insight into how different external stimuli such as SMG can cause negative effects on ossification in the developing skeleton in zebrafish.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10077-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Simulated microgravity (SMG) is an environmental condition that affects bone density in vertebrates. Ground-based studies typically use a random positioning machine in either a 2D or a 3D mode to assess the effects of SMG, however the meaning of these results is difficult to compare between studies due to different experimental parameters. Here, we exposed larval Danio rerio at 3dpf to 23 h of SMG using a 2D and a 3D mode of rotation, using the same experimental setup. Zebrafish larvae were anaesthetized during the experiment. Our results showed that anesthesia (MS222) did not affect the amount of ossification while SMG-2D treatment slightly reduced the amount of ossification compared with the controls. On the other hand, SMG-3D treatment significantly reduced the overall ossification level of the skeleton. Specifically, the anterior end of the notochord, the ceratobranchial-5, the lower jaw articulation, the pharyngeal teeth, and the operculum were affected compared with control treatments. Overall, these results indicate that SMG-3D produced a more effective SMG effect compared with the SMG-2D. This research provides valuable insight into how different external stimuli such as SMG can cause negative effects on ossification in the developing skeleton in zebrafish.

Abstract Image

二维和三维模拟微重力旋转对斑马鱼幼鱼骨化的影响比较
模拟微重力(SMG)是影响脊椎动物骨密度的环境条件。地面研究通常使用2D或3D模式的随机定位机来评估SMG的影响,但由于实验参数不同,这些结果的意义难以在研究之间进行比较。在这里,我们使用相同的实验设置,使用2D和3D旋转模式,在3dpf至23h的SMG下暴露幼虫丹尼奥雷特。实验过程中对斑马鱼幼鱼进行麻醉。我们的研究结果显示,麻醉(MS222)不影响骨化量,而SMG-2D治疗与对照组相比,骨化量略有减少。另一方面,SMG-3D治疗显著降低了骨骼的整体骨化水平。具体而言,与对照组相比,脊索前端、角状分枝-5、下颌关节、咽齿和盖层受到影响。总的来说,这些结果表明SMG- 3d比SMG- 2d产生更有效的SMG效果。这项研究为了解不同的外部刺激(如SMG)如何对斑马鱼骨骼发育中的骨化产生负面影响提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信